实验室分析仪器分析氢谱的步骤

1)区分出杂质峰、溶剂峰、旋转边带杂质含量较低,其峰面积较样品峰小很多,样品和杂质峰面积之间也无简单的整数比关系。据此可将杂质峰区别出来。氘代试剂不可能100%氘代,其微量氢会有相应的峰,如CDCl3中的微量CHCl3在约7.27ppm处出峰。边带峰的区别请阅6.2.1。2)计算不饱和度。不饱和度即环加双键数。当不饱和度大于等于4时,应考虑到该化合物可能存在一个苯环(或吡啶环)。3)确定谱图中各峰组所对应的氢原子数目,对氢原子进行分配根据积分曲线,找出各峰组之间氢原子数的简单整数比,再根据分子式中氢的数目,对各峰组的氢原子数进行分配。4)对每个峰的δ、J都进行分析根据每个峰组氢原子数目及δ值,可对该基团进行推断,并估计其相邻基团。对每个峰组的峰形应仔细地分析。分析时最关键之处为寻找峰组中的等间距。每一种间距相应于一个耦合关系。一般情况下,某一峰组内的间距会在另一峰组中反映出来。通过此途径可找出邻碳氢原子的数目。5)根据对各峰组化......阅读全文

实验室分析仪器质谱仪器扫描质谱数据的处理介绍

对于逐点扫描得到的一段质谱数据,数据处理的首要任务是峰位置的判别。其实质是峰数据与既有模型的匹配过程,这与质谱仪的特性、扫描参数以及数据的统计信息等多种因素有关系。简单情况下,连续几个数据都大于设定的阈值(如最大值5%)即可认为该段数据是峰数据,而剩余的数据可认为是本底。在峰位置判别的基础上,根据本

实验室分析仪器色谱质谱联用仪进样系统

如下图是色谱质谱联用仪的接口与色谱仪组成的进样系统示意图。样品由色谱进样器引入色谱仪,经色谱柱分离的各个组分依次通过接口进入质谱仪的离子源。最常用的是气相色谱质谱(GC/MS)和液相色谱质谱(LC/MS)两种进样模式。该进样系统的关键部分是接口,应满足以下三个条件:GC/MS进样器①接口不破坏离子源

实验室分析仪器核磁共振谱仪数据优化操作

一、H-90°脉冲的测试在测试时,使原子核的磁化矢量翻转90°的脉冲宽度,这时得到的信号最强。测试前先设定照射功率,才能确定90°的脉冲宽度,改变照射功率,90°的脉冲宽度也会改变。我们测定一系列脉冲宽度的图谱,其中得到峰最强的脉冲宽度即为90°脉冲,但是最强峰不明显,所以测180脉冲宽度,这时峰强

实验室分析仪器气相色谱的操作步骤和注意事项

1、气相色谱仪的使用步骤1)打开稳压电源。2)打开氮气阀,打开净化器上的载气开关阀,然后检查是否漏气,保证气密性良好。3)调节总流量为适当值(根据刻度的流量表测得)。4)调节分流阀使分流流量为实验所需的流量(用皂膜流量计在气路系统面板上实际测量),柱流量即为总流量减去分流量。5)打开空气、氢气开关阀

实验室分析仪器电感耦合等离子体质谱定量分析

定量分析用于测定样品中组分的精确浓度,准确度高。 ICP-MS在多元素测定中具有很髙灵敏度,能够测得高质量数据。此外, ICP-MS能够进行稳定同位素测试,无需高质量标准物质即可进行准确定量。为使测试结果准确,需排除可能的干扰或采用合适的方法进行校正。因此,定量分析过程必须采用合适方法排除干扰或进行

实验室分析仪器核磁共振谱仪磁铁与能产生磁场分析

静磁场(或称恒定磁场)是核磁共振实验的必要条件之一,因此用来产生静磁场的磁体是各类核磁共振波谱仪的必备部件。一、静磁场与核磁共振波谱仪性能的关系1、磁场强度高,则灵敏度好。 理论和实验表明,NMR信号强度正比于磁场强度的平方,二噪声比正比于磁场强度的1/2。2、仪器的分辨率主要取决于静磁场的均匀性。

实验室分析仪器氢火焰离子检测器(FID)的基本原理

1、氢火焰检测器是根据色谱流出物中可燃性有机物在氢一氧火焰中发生电离的原理而制成的; 2、由于在火焰附近存在着由收集极和发射极之间所造成的静电场; 3、当被测组分燃烧生成离子,在电场作用下定向移动而形成离子流,经微电流放大器放大,然后到记录仪记录。(目前氢火焰离子检测器的基本原理说法有两种,一种是在

实验室分析仪器气相色谱质谱联用仪的测定方法

总离子流色谱法(total ionization chromatography,TIC)--类似于GC图谱,用于定量。l反复扫描法(repetitive scanningmethod,RSM)--按一定间隔时间反复扫描,自动测量、运算,制得各个组分的质谱图,可进行定性。l质量色谱法(masschro

实验室分析仪器核磁共振谱溶剂的用量多少为合适

在定深量筒上都绘有相应线圈的位置及长度,一般只要保证样品的长度比线圈上下各多出3mm 即可,过少会影响自动匀场效果,过多浪费溶剂而且由于稀释了样品,减少了处在线圈中的有效样品量。这种情况下要注意将样品液柱的中心与定深量筒上的线圈中心对齐。

实验室分析仪器气相色谱质谱联用仪的应用范围

气质联用仪被广泛应用于复杂组分的分离与鉴定,其具有GC的高分辨率和质谱的高灵敏度,是生物样品中药物与代谢物定性定量的有效工具。

实验室分析仪器气相色谱质谱联用仪的发展背景

色谱法是一种很好的分离手段,可以将复杂混合物中的各种组分分离开,但它的定性、鉴定结构的能力较差,并且气相色谱需要多种检测器来解决不同化合物响应值的差别问题;质谱对未知化合物的结构有很强的鉴别能力,定性专属性高,可提供准确的结构信息,灵敏度高,检测快速,但质谱法的不同离子化方式和质量分析技术有其局限性

实验室分析仪器红外光谱仪-红外谱图的分区

按吸收峰的来源,可以将2.5~25μm的红外光谱图大体上分为特征频率区(2.5~7.7μm)以及指纹区(7.7~16.7μm)两个区域。其中特征频率区中的吸收峰基本是由基团的伸缩振动产生,数目不是很多,但具有很强的特征性,因此在基团鉴定工作上很有价值,主要用于鉴定官能团。如羰基,不论是在酮、酸、酯或

实验室分析仪器作为气谱载体使用的物质应满足的条件

表面有微孔结构,孔径均匀,比表面积大;化学和物理惰性,即与样品组分不起化学反应,无吸附作用或吸附很弱;热稳定性好;有一定的机械强度和浸润性,不易破碎;具有一定的粒度和规则的形状,最好是球形。

实验室分析仪器ICP质谱液体样品的引入的原理及要求

一、样品引入系统样品引入系统是ICP-MS的重要组成部分,对分析性能影响极大。ICP要求所有样品以气体、蒸气和气溶胶或固体小颗粒的形式引入炬管中心通道气流中。样品导入方式主要分为三大类:①溶液气溶胶进样系统(如气动雾化器或超声雾化器);②汽化进样系统;③固态粉末进样系统。目前最常用的是溶液气动雾化进

实验室分析仪器电感耦合等离子体质谱原理概述

高频振荡器发生的高频电流,经过耦合系统连接在位于等离子体发生管上端,铜制内部用水冷却的管状线圈上。石英制成的等离子体发生管内有三个同轴氩气流经通道。冷却气(Ar)通过外部及中间的通道,环绕等离子体起稳定等离子体炬及冷却石英管壁,防止管壁受热熔化的作用。工作气体(Ar)则由中部的石英管道引入,开始工作

实验室分析仪器气相色谱-质谱联用系统组成介绍

GC/MS系统(见图)由气相色谱单元、质谱单元、计算机和接口四大件组成,其中气相色谱单元一般由载气控制系统、进样系统、色谱柱与控温系统组成;质谱单元由离子源、离子质量分析器及其扫描部件、离子检测器和真空系统组成;接口是样品组分的传输线以及气相色谱单元、质谱单元工作流量或气压的匹配器;计算机控制系统不

实验室分析仪器电位滴定仪滴定管的更换步骤

1、连接好仪器后,开机显示欢迎界面;2、安装、拆卸滴定管按“清除”键,滴定管回归零位置处于可拆卸状态;3、在等待状态下按“清除”键启动该功能,滴定管返回零位置后自动停止。该功能在等待状态下使用;4、单键盘上的左右箭头,可使换向电机顺时针或逆时针单步转动,用于调整换向轴的偏转角度;5、移取滴定管时按操

实验室分析仪器气相色谱氢火焰离子化检测器的特点

优点:(1)典型的质量型检测器;(2)通用型检测器(测含C有机物);(3)氢焰检测器具有结构简单、稳定性好、灵敏度高、响应迅速、死体积小、线性范围宽等特点;(4)比热导检测器的灵敏度高出近3个数量级,检测下限可达10-12g·g-1。缺点:(1)对载气要求高;(2)检测时要破坏样品,无法回收样品;(

实验室分析仪器气相色谱质谱联用仪的基本部件

质谱仪的基本部件有:离子源、滤质器、检测器三部分组成,它们被安放在真空总管道内。接口:由GC出来的样品通过接口进入到质谱仪,接口是气质联用系统的关键。

实验室分析仪器核磁共振谱所需样品管的注意事项

对于5mm 探头来说,其中探头内部隔离样品和线圈的石英管内径只有5.4mm,如果样品管过粗或者弯曲,很容易卡在探头里甚至挤碎石英管;如果样品管过细或者有裂纹,很容易造成样品管在探头内破碎,污染探头。因此在使用样品管前,首先要在平面上滚动,确定平直;然后对灯光仔细检查有无裂纹;插入转子时要注意是否过紧

实验室分析仪器ICP质谱气体样品引入的过程及色谱原理

对于气态样品,采用直接进样方式。传统ICP中,通人约1L/min的氩气至等离子体底部,形成环形等离子体。利用简单的气体垂直进样系统将气态样品于注射气流混匀。气态样品可以直接引入或利用复杂设备引人如气相色谱分离技术或氢化物发生装置。气体直接进样的具体例子可以参考硅烷中杂质的测定来说明。砷及碘浓度范围为

实验室分析仪器电感耦合等离子体发射光谱仪分析步骤

1、进样系统雾化室:Ryton 材料耐腐蚀雾室。雾化器:正交雾化器,刚玉宝石喷嘴。炬管喷射管:2.0mm刚玉材料。蠕动泵:有SmartRinse智能冲洗功能。2、等离子体系统等离子体双向观测系统计算机控制自动切换观测方式,轴向、侧向观测位置由软件控制自动优化。独立等离子体腔室,具有恒温系统,实现等离

实验分析仪器全谱直读ICP的功能特点

1、全自动化设计自动化程度高,整台仪器除了电源开关,仪器所有功能都是通过计算机控制,可靠、安全、方便。2、性能优异的增强有机进样系统天瑞特有的增强有机进样系统,支持油品直接进样测量,可针对不同种类的样品智能精密调节氧气流量,完全消除积碳影响,、稳定,满足不同客户的需求。3、气体流量自动控制进样系统中

如何看质谱分析仪器的质谱图?

质谱仪器分析是先将物质离子化,按离子的质荷比分离,然后测量各种离子谱峰的强度而实现分析目的的一种分析方法.以检测器检测到的离子信号强度为纵坐标,离子质荷比为横坐标所作的条状图,就是我们常见的质谱图.质谱分析仪器-质谱图术语质荷比:离子质量(以相对原子量单位计)与它所带电荷(以电子电量为单位计)的比值

如何快速解析氢谱和碳谱

如何解析氢谱首先我们需要确定做核磁所使用的氘代溶剂,如果体系没有加TMS,我们就以氘代溶剂残留峰进行定标。对于有特征基团的分子,如甲基,甲氧基,叔丁基,亚甲基等等,我们优先以该峰为基准进行定氢的个数,然后再对其它峰进行操作。在这里我们切记不可用活泼氢作为标准来定氢的个数,因为活泼氢受浓度,温度,和溶

实验室分析仪器飞行时间电感耦合等离子体质谱

在TOF-ICP-MS中,根据离子飞行时间进行分离,不同于扫描型质谱根据离子质荷比进行分离。离子从等离子体采样后,加速至相同的动能,使特定质荷比的离子达到检测器的时间固定。受加速过程的影响,不同质荷比的电子在自由漂移区获得的速率不同(较轻的离子获得速率大),因此飞行时间不同。利用离子响应强度及到达检

实验分析仪器液质联用仪器操作步骤

一、开机与关机当实验室的温度和湿度符合开机条件下,冷启动仪器的顺序如下: 1、核对仪器的初始状态﹙1﹚核对液相色谱仪的色谱柱出口与进入质谱仪离子源的人口之间管线是否相连,如连上则将其脱开;﹙2﹚ 液相色谱仪的总电源开关,自动进样器电源开关﹙如已配置的话﹚是否处于关闭状态,如不是则将其关闭;﹙3﹚质谱

实验室分析仪器红外光谱仪样品测试的一般步骤

将样品压片装于样品架上放于 FTIR 的样品池处。先粗测透光率是否超过40%,若达到40%以上即可进行扫谱,从4000cm-1 开始到 400cm-1 为止。若未达到40%则重新压片。仪器的操作步骤如下。1.开机按顺序开启红外光谱仪稳压电源、显示器、计算机主机及打印机等电源开关。2.启动软件(1)开

实验室分析仪器液相色谱仪常规操作步骤及注意事项

 液相色谱仪操作步骤: 1、打开电脑 2、打开主机、预热 3、进入仪器工作站,联机并设定仪器使用方法及仪器参数 4、启动泵的动力系统预处理(排气等) 5、检查是否漏夜、柱压是否正常 6、设置仪器方法,包括仪器的使用条件等 7、激活操作方法,等待仪器平衡、基线平直 8、仪器出现“Ready”后可进行样

实验室分析仪器-质谱仪的用法分析介绍

分离和检测不同同位素的仪器。仪器的主要装置放在真空中。将物质气化、电离成离子束,经电压加速和聚焦,然后通过磁场电场区,不同质量的离子受到磁场电场的偏转不同,聚焦在不同的位置,从而获得不同同位素的质量谱。质谱方法最早于1913年由J.J.汤姆孙确定,以后经 F.W.阿斯顿等人改进完善。现代质谱仪经过不