实验室分析仪器分析氢谱的步骤
1)区分出杂质峰、溶剂峰、旋转边带杂质含量较低,其峰面积较样品峰小很多,样品和杂质峰面积之间也无简单的整数比关系。据此可将杂质峰区别出来。氘代试剂不可能100%氘代,其微量氢会有相应的峰,如CDCl3中的微量CHCl3在约7.27ppm处出峰。边带峰的区别请阅6.2.1。2)计算不饱和度。不饱和度即环加双键数。当不饱和度大于等于4时,应考虑到该化合物可能存在一个苯环(或吡啶环)。3)确定谱图中各峰组所对应的氢原子数目,对氢原子进行分配根据积分曲线,找出各峰组之间氢原子数的简单整数比,再根据分子式中氢的数目,对各峰组的氢原子数进行分配。4)对每个峰的δ、J都进行分析根据每个峰组氢原子数目及δ值,可对该基团进行推断,并估计其相邻基团。对每个峰组的峰形应仔细地分析。分析时最关键之处为寻找峰组中的等间距。每一种间距相应于一个耦合关系。一般情况下,某一峰组内的间距会在另一峰组中反映出来。通过此途径可找出邻碳氢原子的数目。5)根据对各峰组化......阅读全文
实验室分析仪器-分析氢谱的步骤
1)区分出杂质峰、溶剂峰、旋转边带杂质含量较低,其峰面积较样品峰小很多,样品和杂质峰面积之间也无简单的整数比关系。据此可将杂质峰区别出来。氘代试剂不可能100%氘代,其微量氢会有相应的峰,如CDCl3中的微量CHCl3在约7.27ppm处出峰。边带峰的区别请阅6.2.1。2)计算不饱和度。不饱和度即
实验室分析仪器-氢谱的分析介绍
1)由吸收峰的组数,可以判断有几种不同类型的H核 。2)由峰的强度(峰面积或积分曲线高度),可以判断各类H的相对数目。3)由峰的裂分数目,可以判断相邻H核的数目 。4)由峰的化学位移(δ值),可以判断各类型H所属的化学结构。5)由裂分峰的外型或偶合常数,可以判断哪种类型H是相邻的。
实验室分析仪器核磁共振氢谱的概念
核磁共振氢谱 (也称氢谱) 是一种将分子中氢-1的核磁共振效应体现于核磁共振波谱法中的应用。可用来确定分子结构。 当样品中含有氢,特别是同位素氢-1的时候,核磁共振氢谱可被用来确定分子的结构。氢-1原子也被称之为氕。
实验室分析仪器核磁共振氢谱的原理
核磁共振氢谱(也称氢谱) 是一种将分子中氢-1的核磁共振效应体现于核磁共振波谱法中的应用。可用来确定分子结构。当样品中含有氢,特别是同位素氢-1的时候,核磁共振氢谱可被用来确定分子的结构。氢-1原子也被称之为氕。简单的氢谱来自于含有样本的溶液。为了避免溶剂中的质子的干扰,制备样本时通常使用氘代溶剂(
实验室分析仪器-核磁共振氢谱实验原理
1、核磁共振的概念具有磁性的原子核,处在某个外加静磁场中,受到特定频率的电磁波的作用,在它的磁能级之间发生的共振跃迁现象,叫核磁共振现象。2、核磁共振的共振条件①:具有磁性的原子核。(γ:某种核的磁旋比)②:外加静磁场(H0)中)。③:一定频率(υ)的射频脉冲。④:公式: 3、 化学位移的概念及产生
实验室分析仪器-核磁共振一维氢谱简介
核磁共振一维氢谱是最常用的测试方法,因为氢谱的测试灵敏度是所有核磁共振谱中最高的,因而最容易测定,仅需要将几毫克样品溶在氘代试剂中,甚至有时不需要氘代试剂,可以直接取一定量的反应液就可以测定,几分钟就可以得到结果,非常方便快捷,所以是经常应用的分析方法,对有机化合物的结构鉴定往往起着举足轻重的作用。
实验室分析仪器核磁共振氢谱仪的仪器介绍
核磁共振氢谱 (也称氢谱) 是一种将分子中氢-1的核磁共振效应体现于核磁共振波谱法中的应用。可用来确定分子结构。 当样品中含有氢,特别是同位素氢-1的时候,核磁共振氢谱可被用来确定分子的结构。氢-1原子也被称之为氕。
实验室分析仪器核磁共振碳谱的解析步骤
13C NMR解析步骤:1、确定分子式,计算不饱和度;2、排除溶剂峰及杂质峰;3、判断分子结构的对称性;4、判断C原子结构以及级数; 5、确定C核和H核的对应关系;6、提出结构单元并给出结构式; 7、排除不合理的结构;8、与标准波谱图谱进行比对。
实验室分析仪器核磁共振氢谱仪的性能和应用介绍
核磁共振氢谱(也称氢谱) 是一种将分子中氢-1的核磁共振效应体现于核磁共振波谱法中的应用。可用来确定分子结构。当样品中含有氢,特别是同位素氢-1的时候,核磁共振氢谱可被用来确定分子的结构。氢-1原子也被称之为氕。简单的氢谱来自于含有样本的溶液。为了避免溶剂中的质子的干扰,制备样本时通常使用氘代溶剂(
实验室分析方法质谱的解析大致步骤
1、确认分子离子峰,并由其求得相对分子质量和分子式;计算不饱和度。2、找出主要的离子峰(一般指相对强度较大的离子峰),并记录这些离子峰的质荷比(m/z值)和相对强度。3、对质谱中分子离子峰或其他碎片离子峰丢失的中型碎片的分析也有助于图谱的解析。4、用MS-MS找出母离子和子离子,或用亚稳扫描技术找出
实验室分析仪器核磁共振谱仪的组成
通常是用电磁铁和永久磁铁产生均匀而稳定的磁场B。在两磁极之间安装一个探头,探头中央插入试样管。试样管在压缩空气的推动下,匀速而平稳地回旋。射频振荡器线圈安装在探头中,产生一定频率的射频辐射以激发核。它所产生的射频场必须与磁场方向垂直。射频接收线圈也安装在探头中,以来探测核磁共振时的吸收信号。另有一组
实验室分析仪器核磁共振谱仪的分类
一、按用途分类可分为核磁成像仪和核磁共振谱仪1)核磁成像仪 用于医院诊断疾病核磁共振成像(MRI),已成为医学诊断的重要手段。目前临床上得到的解剖图像,仅是人体中水和脂肪的质子的分布像。虽然它们在疾病诊断上很有用途,但不能提供正常组织和病理组织在分子结构上的区别。如果非破坏性地得到活体内化合物及其
实验室分析仪器核磁共振谱仪的分类
一、按用途分类可分为核磁成像仪和核磁共振谱仪1)核磁成像仪 用于医院诊断疾病核磁共振成像(MRI),已成为医学诊断的重要手段。目前临床上得到的解剖图像,仅是人体中水和脂肪的质子的分布像。虽然它们在疾病诊断上很有用途,但不能提供正常组织和病理组织在分子结构上的区别。如果非破坏性地得到活体内化合物及其
实验室分析仪器核磁共振碳谱的特点
1、灵敏度低由于γc= γH /4,且13C的天然丰度只有1.1%,因此13C核的测定灵敏度很低,大约是H核的1/6000,测定困难。2、 分辨能力高氢谱的化学位移δ值很少超过10ppm,而碳谱的δ值可以超过200ppm,最高可达600ppm。这样,复杂和分子量高达400的有机物分子结构的精细变化都
实验室分析仪器ICP质谱固体样品的引入
固态样品直接分析是传统光谱分析(直流电弧及波形控制火花发射光谱)中最简单的样品引入方法,同时也是火花源质谱痕量分析中传统的制样方法。 固态样品制样简单,进样前通常只需经过研磨、混匀、预制样或者抛光处理。直接进行痕量分析,将样品污染减至最小,避免化学溶解过程中造成的挥发性损失。通常情况下,液态样品引入
实验室分析仪器气质联用氢焰检测器的结构
(1)在发射极和收集极之间加有一定的直流电压(100—300V)构成一个外加电场。(2)氢焰检测器需要用到三种气体: N2 :载气携带试样组分; H2 :为燃气; 空气:助燃气。(3)使用时需要调整三者的比例关系,检测器灵敏度达到最佳。
实验室分析仪器气质联用氢焰检测器的原理
(1)当含有有机物 CnHm的载气由喷嘴喷出进入火焰时,在C层发生裂解反应产生自由基 : CnHm ──→ · CH(2)产生的自由基在D层火焰中与外面扩散进来的激发态原子氧或分子氧发生如下反应: · CH + O ──→CHO+ + e(3)生成的正离子CHO+ 与火焰中
实验室分析仪器气质联用氢焰检测器特点
氢焰检测器特点(FID:hydrogen flame ionization detector)(1)典型的质量型检测器;(2)对有机化合物具有很高的灵敏度;(3)无机气体、水、四氯化碳等含氢少或不含氢的物质灵敏度低或不响应;(4)氢焰检测器具有结构简单、稳定性好、灵敏度高、响应迅速等特点;(5)
实验室分析仪器电感耦合等离子体质谱质谱干扰
ICP-MS中的干扰可分为两大类:“ 质谱干扰”和“非质谱于扰”或称为“基体效应”。质谱干扰是 ICP-MS中见到的最严重的干扰类型,通常对分析物离子流测量结果产生正误差。可进一步分为:同量异位素重叠干扰;多原子离子干扰;难熔氧化物干扰;双电荷离子干扰。第二种类型的干扰大体可分为:抑制和增强效应;由
实验室分析仪器气质联用仪开关机步骤
1、 打开氦气钢瓶总阀,设置分压阀压力至0.5Mpa。打开氮气钢瓶总阀,设置分压阀压力0.15MPa。 2、 打开计算机,登录进入Windows系统。 3、 确认毛细色谱柱已经装好,打开GC电源开关。打开7000系列质谱仪电源,在打开MSD电源的同时用手向右推分析器前侧板直至侧面板被紧固地吸牢
实验室分析仪器全谱直读ICP仪的产品特点
1、全自动化设计自动化程度高,整台仪器除了电源开关,仪器所有功能都是通过计算机控制,可靠、安全、方便。2、性能优异的增强有机进样系统特有的增强有机进样系统,支持油品直接进样测量,可针对不同种类的样品智能精密调节氧气流量,完全消除积碳影响,稳定,满足不同客户的需求。3、气体流量自动控制进样系统中,载气
实验室分析仪器核磁共振碳谱的测定方法
1、 脉冲傅里叶变换法脉冲傅立叶变换法(Pulse Fourier Transform,简称PFT法)是利用短的射频脉冲方式的射频波照射样品,并同时激发所有的13C核。由于激发产生了各种13C核所引起的不同频率成分的吸收,并被接收器所检测。2、 核磁共振碳谱中的几种去偶技术13C核的天然丰度很低,分
实验室分析仪器电感耦合等离子体质谱非质谱干扰
一、抑制或增强型干扰空间电荷效应是 ICP-MS中的基体干扰干扰主要原因。通常表现为分析信号的受到抑制或增强。 在等离子体和超声射流中,离子电流被相等的电子流所平衡,因此,整个离子束基本上呈现出电中性。而当离子束离开截取锥后,由透镜建立起的电场将收集离子而排斥电子。以使离子被束缚在一个很窄的离子束中
实验室分析仪器飞行时间质谱结构原理
飞行时间质谱仪结构飞行时间质谱仪结构示意图如上,在检测器前设置了一个电位选择器网栅,与离子源控制栅极同步运行,使所选择质量的离子进入检测器。与入射离子成直角,配制滞阻电极的飞行时间质量分析器分辨率更高,并可消除中性离子和散射离子的影响。
实验室分析仪器气质联用仪质谱调谐方法
调谐就是调整离子源和四极杆参数来达到理想的信号强度和分辨率。每个四极杆,MS1和MS2,分别调谐。当一个四极杆被调谐的时候,另外一个允许所有离子穿过。7000 型质谱仪调谐时碰撞气可以打开。1、自动调谐(CI源调谐时,甲烷反应气钢瓶总阀要打开,输出压力约0.15 MPa)在仪器控制面板中,点击调谐图
实验室分析仪器有机质谱飞行时间分析系统结构分析
离子受到加速电压的作用离开离子源后在一个无场区域内飞行直至抵达检测器,各种质荷比的离子受到相同的加速电压作用,但由于它们的质荷比不同,在无场区域内飞行的速度不同,导致到达检测器的时间也不同。利用离子到达的时间不同达到区分不同质荷比的效果,这就是飞行时间分析系统的原理。图是经典的线性飞行时间质谱分析系
实验室分析仪器核磁共振谱仪的性能指标分析
一、分辨率分辨率系指仪器分辨相邻谱线的能力。分辨率越高,谱线越窄,能被分开的两峰间距就越小。一般选用乙醇作标准品,测试仪器分辨率。乙醇的—CHO是一组四重峰,取其高峰的半高宽作为分辨率的指标,如图一所示。一般一起的分辨率在0.1-0.4Hz。图一 乙醇的醛基四重峰二、灵敏度灵敏度又称信噪比,是衡
实验室分析仪器氢火焰离子化检测器结构原理、操作分析
(一)氢火焰离子化检测器的结构氢火焰离子化检测器由氢火焰电离室和放大器组成。FID的电离室由金属圆筒作为外壳,内装有喷嘴,喷嘴附近有一个环状金属环极化极(又称发射极),上端有一金属圆筒(收集极),两者与90~300V的直流高压相连,形成电离电场。收集极捕集的离子流经放大器的高阻产生信号,放大后输送到
实验室分析仪器电感耦合等离子体质谱定性分析
定性分析是确定样品中是否存在某个元素或一组元素。仪器能否进行完全定量分析直接与分析方法及仪器检测能力有关。理想状态下,希望只用一个样品溶液同时测定主量、微量、痕量及超痕量元素含量。这就要求仪器对不同元素同位素具有宽的动态响应范围。实际使用过程中,通常难以在一个样品溶液同时测定主量元素(响应强度高)及
实验室分析仪器质谱仪器扫描质谱数据的处理介绍
对于逐点扫描得到的一段质谱数据,数据处理的首要任务是峰位置的判别。其实质是峰数据与既有模型的匹配过程,这与质谱仪的特性、扫描参数以及数据的统计信息等多种因素有关系。简单情况下,连续几个数据都大于设定的阈值(如最大值5%)即可认为该段数据是峰数据,而剩余的数据可认为是本底。在峰位置判别的基础上,根据本