什么是连续X射线和特征X射线谱

连续X射线,是电子跑着跑着突然被原子核拉住,能量没地儿放,于是放出X射线,这里放出的能量是连续的。特征X射线是处于特定能级的电子吸收光子,处于激发态,跑到低能级上放出的能量,故是一份一份的,具有明显衍射峰。介绍阴极射线的电子流轰击到靶面,如果能量足够高,靶内一些原子的内层电子会被轰出,使原子处于能级较高的激发态。图表示的是原子的基态和K、L、M、N等激发态的能级图,K层电子被击出称为K激发态,L层电子被击出称为L激发态,依次类推。原子的激发态是不稳定的,寿命不超过10-8秒,此时内层轨道上的空位将被离核更远轨道上的电子所补充,从而使原子能级降低,这时,多余的能量便以光量子的形式辐射出来。......阅读全文

什么叫连续x射线

连续X射线是高速电子受到阳极靶原子核的库仑场的阻力减速,动能转化为X射线的能量时产生的。又称轫致辐射。相对地,还有一种标识X射线。标识X射线是高速电子将靶原子的内层轨道电子碰撞出轨道后,外层电子向内层跃迁时发出的。因为跃迁释放的能量具有原子的特征,因此又称特征X射线。标识X射线和连续X射线的激发源都

什么叫连续x射线

连续X射线是高速电子受到阳极靶原子核的库仑场的阻力减速,动能转化为X射线的能量时产生的。又称轫致辐射。相对地,还有一种标识X射线。标识X射线是高速电子将靶原子的内层轨道电子碰撞出轨道后,外层电子向内层跃迁时发出的。因为跃迁释放的能量具有原子的特征,因此又称特征X射线。标识X射线和连续X射线的激发源都

什么是连续X射线和特征X射线谱

连续X射线,是电子跑着跑着突然被原子核拉住,能量没地儿放,于是放出X射线,这里放出的能量是连续的。特征X射线是处于特定能级的电子吸收光子,处于激发态,跑到低能级上放出的能量,故是一份一份的,具有明显衍射峰。介绍阴极射线的电子流轰击到靶面,如果能量足够高,靶内一些原子的内层电子会被轰出,使原子处于能级

什么是连续X射线谱?

  (1)根据经典物理学的理论,一个带负电荷的电子作加速运动时,电子周围的电磁场将发生急剧变化,此时必然要产生一个电磁波,或至少一个电磁脉冲。由于极大数量的电子射到阳极上的时间和条件不可能相同,因而得到的电磁波将具有连续的各种波长,形成连续X射线谱  (2)量子力学概念,当能量为eV的电子与靶的原子

3分钟了解连续X射线与特征X射线

  连续X射线,是电子跑着跑着突然被原子核拉住,能量没地儿放,于是放出X射线,这里放出的能量是连续的;而特征X射线是处于特定能级的电子吸收光子,处于激发态,跑到低能级上放出的能量,故是一份一份的,具有明显衍射峰。还有个是X射线荧光,这个是用X射线激发,电子放出光子,与特征X射线刚好是反的

X射线管激发X荧光光谱连续本底扣除方法研究

X射线管是目前X射线荧光光谱分析中最常采用的激发源,它所产生的原级谱成为了X荧光光谱中本底成分的主要来源,在对这种光谱进行进一步的分析处理之前需要对其本底进行扣除,对本底估计的准确性直接影响后续处理步骤的效果。对射线管激发X荧光光谱的成分进行了分析,针对其本底特点构造了一种本底强度的估计方法,并根据

Z箍缩软X射线连续能谱测量

诊断Z箍缩等离子体不同时刻的空间分布及状态是认识等离子体运动规律进而控制其箍缩过程以便加以利用的必经环节。在箍缩过程中,离子、电子和光子发生强烈的相互作用,探测出射的X光可不破坏等离子体原有状态而获取三者运动信息。通过测量X光能谱可以探知辐射场温度、离子密度、辐射冲击过程等等。受现有装置驱动能力的限

HPGe测量连续硬X射线能谱的方法研究

采用数值模拟与实验测量相结合的方法,完成了探测系统刻度,得到了该探测器对单能光子的能量全响应函数,在此基础上探索出改进的剥谱法,对测量得到的连续硬X射线能谱进行解析,扣除了测量谱中非光电效应对每道计数的贡献,复现了测量位置处的实际能谱,并对该能谱测量方法进行了误差分析,提出了进一步完善措施。 

X射线荧光(XRF):理解特征X射线

  什么是XRF?   X射线荧光定义:由高能X射线或伽马射线轰击激发材料所发出次级(或荧光)X射线。这种现象广泛应用于元素分析。  XRF如何工作?   当高能光子(X射线或伽马射线)被原子吸收,内层电子被激发出来,变成“光电子”,形成空穴,原子处于激发态。外层电子向内层跃迁,发射出能量等于两级能

HPGe测量连续硬X射线能谱的解谱方法研究

结合数值模拟得到的单能光子在HPGe探测器上能量响应函数,用改进的剥谱法对测量得到的连续硬X射线能谱进行解谱。扣除测量谱中康普顿、反散射等效应产生的计数对测量能谱的影响,得到了仅反映探测器对光电效应的能量响应的能谱。最后,通过效率修正,完成了测量谱到实际能谱的还原,为连续硬X射线能谱解析提供了可靠方

软X射线源上X射线能谱与X射线能量的测量

本文介绍了国内首次利用针孔透射光栅谱仪对金属等离子体Z箍缩X射线源能谱的测量结果及数据处理方法。同时用量热计对该源的单脉冲X射线能量进行了测量并讨论了其结果。

X射线管中X射线的产生原理

实验室中X射线由X射线管产生,X射线管是具有阴极和阳极的真空管,阴极用钨丝制成,通电后可发射热电子,阳极(就称靶极)用高熔点金属制成(一般用钨,用于晶体结构分析的X射线管还可用铁、铜、镍等材料).用几万伏至几十万伏的高压加速电子,电子束轰击靶极,X射线从靶极发出.

科学家发现轨道连续扩张的持续超软X射线源

原文地址:http://news.sciencenet.cn/htmlnews/2023/5/500616.shtm记者14日从中国科学院云南天文台获悉,该台研究人员首次发现银河系中轨道连续扩张的持续超软X射线源,并揭示了由物质转移引起的轨道演化机制,提示当白矮星质量达到相应极限时,很可能会产生Ia

X射线光谱

1914年,英国物理学家莫塞莱(Henry Moseley,1887-1915)用布拉格X射线光谱仪研究不同元素的X射线,取得了重大成果。莫塞莱发现,以不同元素作为产生X射线的靶时,所产生的特征X射线的波长不同。他把各种元素按所产生的特征X射线的波长排列后,发现其次序与元素周期表中的次序一致,他称这

X射线治疗

  X射线应用于治疗[7],主要依据其生物效应,应用不同能量的X射线对人体病灶部分的细胞组织进行照射时,即可使被照射的细胞组织受到破坏或抑制,从而达到对某些疾病,特别是肿瘤的治疗目的。

X射线散射

美国物理学家康普顿(Arthur Holy Compton,1892~1962)在大学生时期就跟随其兄卡尔·康普顿开始X射线的研究。后来他到了卡文迪什实验室,主要从事g射线的实验研究。他用精湛的实验技术精确测定了γ射线的波长,并确定γ射线在散射后波长会变得更长。但他没能从理论上解释这个实验事实。他到

X射线诊断

  X射线应用于医学诊断[6],主要依据X射线的穿透作用、差别吸收、感光作用和荧光作用。由于X射线穿过人体时,受到不同程度的吸收,如骨骼吸收的X射线量比肌肉吸收的量要多,那么通过人体后的X射线量就不一样,这样便携带了人体各部密度分布的信息,在荧光屏上或摄影胶片上引起的荧光作用或感光作用的强弱就有较大

X射线原理

X射线定义X射线是由于原子中的电子在能量相差悬殊的两个能级之间的跃迁而产生的粒子流,是波长介于紫外线和γ射线之间的电磁波。其波长很短约介于0.01~100埃之间。X射线具有很高的穿透本领,能透过许多对可见光不透明的物质,如墨纸、木料等。这种肉眼看不见的射线可以使很多固体材料发生可见的荧光,使照相底片

X-射线激光

X 射线激光指的是 XFEL (x-ray free-electron laser),X 射线自由电子激光。而这种激光,是将自由电子激光技术(FEL)产生的激光,拓展到 X 射线范围内而产生的一种 X 射线激光。这种激光的强度可达传统方法产生的激光亮度的十亿倍,因此可让较小晶体产生出足够强的衍射图样

x射线衍射仪和x射线机有什么不同

X射线衍射仪和X射线机有什么不同我觉得X射线机是用来照射X光线X射线衍射线一他是用来衍射的他俩不同

质子激发X射线荧光分析的X-射线谱

  在质子X 射线荧光分析中所测得的X 射线谱是由连续本底谱和特征X 射线谱合成的叠加谱。样品中一般含有多种元素,各元素都发射一组特征X 射线谱,能量相同或相近的谱峰叠加在一起,直观辨认谱峰相当困难,需要通过复杂的数学处理来分解X 射线谱。解谱包括本底的扣除、谱的平滑处理、找峰和定峰位、求峰的半高宽

特征X射线谱与连续谱发射机制的主要区别

特征X射线谱是阳极原子在高速电子作用下能级跃迁产生的,连续谱是高速电子撞击阳极减速时产生的轫致辐射。

特征X射线谱与连续谱发射机制的主要区别

特征X射线谱是阳极原子在高速电子作用下能级跃迁产生的,连续谱是高速电子撞击阳极减速时产生的轫致辐射.

特征X射线谱与连续谱发射机制的主要区别

特征X射线谱是阳极原子在高速电子作用下能级跃迁产生的,连续谱是高速电子撞击阳极减速时产生的轫致辐射。

X射线机重过滤X射线能谱的测量

本文报道了用 NaI(Tl)闪烁谱仪对国产 F34-Ⅰ型 X 射线机的重过滤 X 射线能谱的测量和解谱方法,给出一组测量结果,并对测量结果进行了比较和讨论。

高频X射线机和工频X射线机的区别

  高频机与工频机的不同  高频机是指高压发生器的工作频率大于20kHz的X线机,工频机是指高压发生器的工作频率小于400Hz的X线机。工频机将50Hz的工频电源升高压整流后有100Hz的正弦纹波,经滤波后仍有10%以上的纹波,高频机工作频率高,高压整流后的电压基本上是恒定的直流,纹波可小于0.1%

X射线与γ射线的相关介绍

  X射线是带电粒子与物质交互作用产生的高能光量子。  X射线与γ射线有许多类似的特性,但它们起源不同。  X射线由原子外部引起,而γ射线由原子内部引起。X射线比γ射线能量低,因此穿透力小于γ射线。成千上万台X射线机在日常中被运用于医学和工业上。X射线也被用于癌症治疗中破坏癌变细胞,由于它的广泛运用

X射线测厚仪与γ射线测厚仪比较

 X射线测厚仪与γ射线测厚仪比较  (1)物理特性  X射线束能缩减为很小的一点,其结构几何形状不受限制,而γ射线则不能做到,因此光子强度会急骤减少以致噪音大幅度增加。  (2)信号/噪音比  X射线测厚仪:X射线的高光子输出,能带来比γ射线在相同时间常数下约好10倍的噪音系数。  (3)反应时间 

X射线的产生

  电子的韧制辐射,用高能电子轰击金属,电子在打进金属的过程中急剧减速,按照电磁学,有加速的带电粒子会辐射电磁波,如果电子能量很大,比如上万电子伏,就可以产生x射线,这是目前实验室和工厂,医院等地方用的产生x射线的方法。  原子的内层电子跃迁也可以产生x射线,量子力学的理论,电子从高能级往低能级跃迁

X射线的产生

X射线的产生 在X射线方面,情况完全不同:越高的加速电压越有利于X射线的产生。X射线可以由能谱仪(EDS)捕获和处理,从而对样品的成分进行分析。 入射电子束中的电子与样品中的原子相互作用,迫使目标样品中的电子被打出。这样样品中就会有空穴生成,它由一个来自于同一原子的外层能量较高电子填充。这个过程要求