质子激发X射线荧光分析的X射线谱
在质子X 射线荧光分析中所测得的X 射线谱是由连续本底谱和特征X 射线谱合成的叠加谱。样品中一般含有多种元素,各元素都发射一组特征X 射线谱,能量相同或相近的谱峰叠加在一起,直观辨认谱峰相当困难,需要通过复杂的数学处理来分解X 射线谱。解谱包括本底的扣除、谱的平滑处理、找峰和定峰位、求峰的半高宽和峰面积。谱的数学解法已研究出多种,并已编制成计算机程序。从解X 射线谱中可得到某一待测元素的特征谱峰的面积(峰计数),根据峰面积可计算出该元素的含量。这种直接计算的办法需要对探测系统标定探测效率、确定探头对靶子所张立体角、测定射到靶子上的质子数等。 在实际分析工作中多采用相对测定法,即将试样和标样同时分析比较, 设试样和标样中待测元素的特征X 射线谱峰计数为NX 和NS,含量为Wx 和WS则得: Wx=NxWs/Ns......阅读全文
质子激发X射线荧光分析的X-射线谱
在质子X 射线荧光分析中所测得的X 射线谱是由连续本底谱和特征X 射线谱合成的叠加谱。样品中一般含有多种元素,各元素都发射一组特征X 射线谱,能量相同或相近的谱峰叠加在一起,直观辨认谱峰相当困难,需要通过复杂的数学处理来分解X 射线谱。解谱包括本底的扣除、谱的平滑处理、找峰和定峰位、求峰的半高宽
质子激发X射线荧光分析的简介
利用原子受质子激发后产生的特征 X射线的能量和强度来进行物质定性和定量分析的方法。简称质子 X射线荧光分析,英文缩写为PIXE。质子X 射线荧光分析是20 世纪70 年代发展起来的一种多元素微量分析技术,其分析灵敏度可达10-16 克,相对灵敏度可达10-6~10-7 克/克。原则上可分析原子序
质子激发X射线荧光分析的实验装置
质子X 射线荧光分析的主要实验装置包括: ①加速器,一般用质子静电加速器,选用能量为1~3 兆电子伏的质子,在此能量范围内,质子激发X射线的产额高,灵敏度高;质子的能量再高时,将会引起许多核反应,使本底增大;能量再低时,质子的穿透能力下降,只能用于表面分析。②靶室(或称散射室),是分析样品放置
简述质子激发X射线荧光分析的原理
基本原理是用高速质子照射样品,质子与样品中的原子发生库仑散射。原子内层电子按一定几率被撞出内壳层,留下空穴,较外层电子向这个空穴跃迁时发射出特征X 射线。用探测仪器探测和记录这些特征X 射线谱,根据特征X 射线的能量可定性地判断样品中所含元素的种类,根据谱线的强度可计算出所测元素的含量。
质子激发X射线荧光分析的非真空分析技术
质子X 射线荧光分析一般在真空中照射样品(称作真空分析或内束技术),但也发展了一种非真空分析技术(或称外束技术),即将质子束从真空室中引出,在空气(或氦气)中轰击样品。真空分析可能引起厚样品积累正电荷(质子电荷)而吸引周围电子,造成本底增高。非真空分析由于样品周围空气电离而有导电性,可消除电荷积
X射线谱仪
X射线谱仪简介编辑X射线谱仪设计有20路探测器,是此次载荷中探测器路数最多的系统,为有效预防多路探测器之间相互干扰,在硬/软件设计中还专门设计了“隔离”探测器单元功能及对太阳监测器计数率的调阈指令,以提高探测器在轨长期工作的可靠性 [1] 。X射线谱仪指向月面,由16路硬X射线半导体探测器阵列,4
X射线谱仪简介
X射线谱仪设计有20路探测器,是此次载荷中探测器路数最多的系统,为有效预防多路探测器之间相互干扰,在硬/软件设计中还专门设计了“隔离”探测器单元功能及对太阳监测器计数率的调阈指令,以提高探测器在轨长期工作的可靠性。 X射线谱仪指向月面,由16路硬X射线半导体探测器阵列,4路高分辨软X射线半导体
激发X射线荧光分析法的概念
当α 、β、γ或X射线作用于样品时,由于库仑散射,轨道电子吸收其部分动能,使原子处于激发状态。由激发态返回基态时发射特征X射线,根据此特征X射线的能量和强度来分析元素的种类和含量。其灵敏度很高,用途很广。
掠射软X射线荧光分析技术研究
掠射X射线分析是近年来迅速发展的一门分析技术,在科学研究以及分析检测和质量控制等生产领域都有着广泛的应用。X射线分析技术具有试样无损分析、制样经济方便、操作简单、分析结果重现性好及精度高等优点,使得这项技术在薄膜特性分析、半导体材料及磁铁材料表面检测方面受到特别的青睐。本文在综述了国内外掠射X射线荧
什么是连续X射线和特征X射线谱
连续X射线,是电子跑着跑着突然被原子核拉住,能量没地儿放,于是放出X射线,这里放出的能量是连续的。特征X射线是处于特定能级的电子吸收光子,处于激发态,跑到低能级上放出的能量,故是一份一份的,具有明显衍射峰。介绍阴极射线的电子流轰击到靶面,如果能量足够高,靶内一些原子的内层电子会被轰出,使原子处于能级
嫦娥三号粒子激发X射线谱仪通过验收
日前,记者从中科院高能物理所获悉,经专家讨论,嫦娥三号“粒子激发X射线谱仪”项目日前正式通过验收及成果鉴定。据悉,这是我国首次将主动激发荧光探测方式应用于深空探测领域。 该项目成果鉴定会上,中科院院士欧阳自远担任专家委员会主任,中国工程院院士姜景山、中科院院士万卫星、中国工程院院士欧阳晓平等担
X射线谱仪的发展
X射线谱仪是我国绕月探测工程实现月球资源探测、研究月球组成预演化等的重要手段和有效方法之一。“在我国探月工程分三步走的进程中,通过一期嫦娥一号卫星有效载荷绕月工程在轨观测,我们将获得月球表面元素的种类及其含量、分布。有了月表元素分布图,就能为探月二期工程利用月球车登月后进行资源探测和进一步的科考
X射线谱仪的特点
X射线谱仪X射线探测器具有灵敏度高、分辨率好、重量轻及功耗低等特点,但易受到外界干扰,特别是温度的影响。由于我们探测器入射窗是暴露在卫星外,月球表面的昼夜周期极限温度变化非常大,温度环境对探测器性能有影响;另外探测器采用的硅半导体阵列,每片厚度仅微米数量级,承受外力的能力差和弱探测信号等不利因素
X射线谱仪的性能
X射线谱仪X射线谱仪和太阳监测器分别安装在卫星顶板和侧板上。其中,X射线谱仪用于探测月球表面元素受太阳X射线或宇宙射线激发产生的荧光X射线,如Mg、Al或Si元素等。其飞行方向与卫星轨道成45度角,正对月面。太阳监测器正对太阳,监测太阳活动,从而得到入射的太阳X射线能谱,结合X射线谱仪,获得到相
X射线谱仪的应用
我国“嫦娥一号”探月卫星的一个有效载荷,它可探测月表元素受太阳X射线或宇宙射线激发产生的X射线荧光,并能对太阳X射线辐射进行监测,通过数据反演法可获得月表主要元素的含量和分布,以确定月表岩石类型和资源分布,并为月球探测和检验月球形成与演化模型提供重要信息。 一些天文卫星上都会应用X射线探测器。
X射线谱仪的组成
X射线谱仪主要由X射线谱仪探测器,太阳监测器和电控箱组成。 1.太阳监测器:指向太阳,监测太阳X射线辐射,配合月表X 射线观测,获得元素的绝对丰度分布。由Si-PIN组成的半导体探测器阵列,包括4路1~10keV的低能探测器,探测面积为1cm2,16路10~60keV的高能探测器,探测面积为1
质子激发X射线发射光谱分析简介
是20世纪60年代末发展起来的一种新的微量分析技术。经加速器加速的质子束聚焦后,空间分辨率达微米,可以激发微区样品的X射线,用高能量分辨率的Si(Li)半导体探测器,检测X射线能量及其强度,实现X射线光谱分析,并可同时进行背散射分析。与其他分析方法相比,具有检测限低,快速和可同时进行多元素分析等
什么是连续X射线谱?
(1)根据经典物理学的理论,一个带负电荷的电子作加速运动时,电子周围的电磁场将发生急剧变化,此时必然要产生一个电磁波,或至少一个电磁脉冲。由于极大数量的电子射到阳极上的时间和条件不可能相同,因而得到的电磁波将具有连续的各种波长,形成连续X射线谱 (2)量子力学概念,当能量为eV的电子与靶的原子
吸收X射线谱法的简介
中文名称吸收X射线谱法英文名称absorption X-ray spectrum定 义利用试样对X射线的特征吸收进行试样元素定性定量分析的方法。应用学科机械工程(一级学科),分析仪器(二级学科),能谱和射线分析仪器-能谱和射线分析仪器分析原理(三级学科)
发射X射线谱法的简介
中文名称发射X射线谱法英文名称emission X-ray spectrum定 义利用X射线或电子束激发试样产生的X射线,对试样所包含的某种元素进行定量定性分析的方法。应用学科机械工程(一级学科),分析仪器(二级学科),能谱和射线分析仪器-能谱和射线分析仪器分析原理(三级学科)
X射线谱仪的功能和应用
电子束轰击样品表面将产生特征X射线,不同的元素有不同的X射线特征波长和能量。通过鉴别其特征波长或特征能量就可以确定所分析的元素。利用特征波长来确定元素的仪器叫做波长色散谱仪(波谱仪),利用特征能量的就称为能量色散谱仪(能谱仪)。
X射线谱仪的发展及特点
发展 X射线谱仪是我国绕月探测工程实现月球资源探测、研究月球组成预演化等的重要手段和有效方法之一。“在我国探月工程分三步走的进程中,通过一期嫦娥一号卫星有效载荷绕月工程在轨观测,我们将获得月球表面元素的种类及其含量、分布。有了月表元素分布图,就能为探月二期工程利用月球车登月后进行资源探测和进一
X射线谱仪的组成及性能
组成 X射线谱仪主要由X射线谱仪探测器,太阳监测器和电控箱组成。 1.太阳监测器:指向太阳,监测太阳X射线辐射,配合月表X 射线观测,获得元素的绝对丰度分布。由Si-PIN组成的半导体探测器阵列,包括4路1~10keV的低能探测器,探测面积为1cm2,16路10~60keV的高能探测器,探测
X射线谱仪的性能及应用
性能 X射线谱仪X射线谱仪和太阳监测器分别安装在卫星顶板和侧板上。其中,X射线谱仪用于探测月球表面元素受太阳X射线或宇宙射线激发产生的荧光X射线,如Mg、Al或Si元素等。其飞行方向与卫星轨道成45度角,正对月面。太阳监测器正对太阳,监测太阳活动,从而得到入射的太阳X射线能谱,结合X射线谱仪,
X射线谱仪的特点及组成
特点 X射线谱仪X射线探测器具有灵敏度高、分辨率好、重量轻及功耗低等特点,但易受到外界干扰,特别是温度的影响。由于我们探测器入射窗是暴露在卫星外,月球表面的昼夜周期极限温度变化非常大,温度环境对探测器性能有影响;另外探测器采用的硅半导体阵列,每片厚度仅微米数量级,承受外力的能力差和弱探测信号等
电子激发X荧光分析的介绍
电子激发X荧光分析的轫致辐射本底比PIXE高二个量级以上,因此分析灵敏度低得多。但是,用聚焦的电子束激发样品表面1微米的区域,使产生元素的特征X 射线,可以观察样品表面组成的局部变化。用这种方法能测定合金、矿物、陶瓷等样品中的夹杂物和析出物,决定合金元素的局部富集区等。
X射线能谱微区分析中出射角对X射线强度的影响
利用SEM-EDS研究了硅衬底上Au、Cu薄膜发射的不同线系特征X射线相对强度间比值随出射角的变化规律,探讨了影响其变化的原因。结果显示:随着出射角变大,同一元素不同线系X射线相对强度间比值具有一定变化规律。低能量谱线的强度相对高能量谱线逐渐变大,这种变化主要是受X射线被基体吸收效应的影响所致。在低
X射线荧光分析的介绍
X射线荧光分析是确定物质中微量元素的种类和含量的一种方法,又称X射线次级发射光谱分析,是利用原级X射线光子或其它微观粒子激发待测物质中的原子,使之产生次级的特征X射线(X光荧光)而进行物质成分分析和化学态研究。 1948年由H.费里德曼(H.Friedmann)和L.S.伯克斯(L.S.Bir
X射线管激发X荧光光谱连续本底扣除方法研究
X射线管是目前X射线荧光光谱分析中最常采用的激发源,它所产生的原级谱成为了X荧光光谱中本底成分的主要来源,在对这种光谱进行进一步的分析处理之前需要对其本底进行扣除,对本底估计的准确性直接影响后续处理步骤的效果。对射线管激发X荧光光谱的成分进行了分析,针对其本底特点构造了一种本底强度的估计方法,并根据
X射线荧光(XRF):理解特征X射线
什么是XRF? X射线荧光定义:由高能X射线或伽马射线轰击激发材料所发出次级(或荧光)X射线。这种现象广泛应用于元素分析。 XRF如何工作? 当高能光子(X射线或伽马射线)被原子吸收,内层电子被激发出来,变成“光电子”,形成空穴,原子处于激发态。外层电子向内层跃迁,发射出能量等于两级能