核苷酸切除修复技术的过程和分类
核苷酸切除修复(Nucleotide excision repair, NER)NER主要修复那些影响区域性的染色体结构的DNA损害,包括由紫外线所导致的双嘧啶键结(pyrimidine dimer),化学分子或蛋白质与DNA间的键结—DNA附加物(DNA adduct),或者DNA与DNA的键结—DNA交互连结(cross-link)等。这些损害的形式若没有适时的排除,DNA聚合酶将无法辨识而滞留在损害的位置,这时细胞就会活化细胞周期检查点以全面停止细胞周期的进行。分类主要包含全基因组的核苷酸切除修复和转录偶联的核苷酸切除修复。主要过程损伤识别---蛋白复合体结合到损伤位点----在错配位点上下游几个碱基的位置上(上游5’端和下游3‘端)将DNA链切开----将两个切口间的寡核苷酸序列清除----DNA聚合酶合成新的片段填补gap----连接酶将新合成片段与原DNA链连接起来......阅读全文
核苷酸的合成代谢过程
嘌呤核苷酸主要由一些简单的化合物合成而来,这些前身物有天门冬氨酸、甘氨酸、谷氨酰胺、CO2及一碳单位(甲酰基及次甲基,由四氢叶酸携带)等。它们通过11步酶促反应先合成次黄嘌呤核苷酸(肌苷酸)。随后,肌苷酸又在不同部位氨基化而转变生成腺苷酸及鸟苷酸。合成途径的第一步是5-磷酸核糖在酶催化下,活化生成5
嘌呤核苷酸的补救合成过程
反应中的主要酶包括腺嘌呤磷酸核糖转移酶(APRT),次黄嘌呤-鸟嘌呤磷酸核糖转移酶(HGPRT)。嘌呤核苷酸补救合成的生理意义:节省从头合成时能量和一些氨基酸的消耗;体内某些组织器官,例如脑、骨髓等由于缺乏从头合成嘌呤核苷酸的酶体系,而只能进行嘌呤核苷酸的补救合成。
嘌呤核苷酸循环的过程介绍
转氨基作用中生成的天冬氨酸与次黄嘌呤核苷酸(IMP)作用生成腺苷酸代琥珀酸,后者在裂解酶作用下生成延胡索酸和腺嘌呤核苷酸,腺嘌呤核苷酸在腺苷酸脱氨酶作用下脱掉氨基又生成IMP的过程.
关于核苷酸酶的分类介绍
一类由嘌呤碱或嘧啶碱、核糖或脱氧核糖以及磷酸三种物质组成的化合物。又称核甙酸。戊糖与有机碱合成核苷,核苷与磷酸合成核苷酸,4种核苷酸组成核酸。核苷酸主要参与构成核酸,许多单核苷酸也具有多种重要的生物学功能,如与能量代谢有关的三磷酸腺苷(ATP)、脱氢辅酶等。某些核苷酸的类似物能干扰核苷酸代谢,可
核苷酸酶的基本分类
一类由嘌呤碱或嘧啶碱、核糖或脱氧核糖以及磷酸三种物质组成的化合物。又称核甙酸。戊糖与有机碱合成核苷,核苷与磷酸合成核苷酸,4种核苷酸组成核酸。核苷酸主要参与构成核酸,许多单核苷酸也具有多种重要的生物学功能,如与能量代谢有关的三磷酸腺苷(ATP)、脱氢辅酶等。某些核苷酸的类似物能干扰核苷酸代谢,可作为
转染的技术特点和分类
转染(transfection)是细胞在一定条件下主动或被动导入外源DNA片段而获得新的表型的过程。 从本质上讲,和转化没有根本的区别。无论是转染还是转化,其关键因素都是用氯化钙处理大肠杆菌细胞,以提高细胞膜的通透性,从而使外源DNA分子能够容易进入细胞内部。所以在习惯上,人们往往也通称转染为广
转染的技术特点和分类
转染(transfection)是细胞在一定条件下主动或被动导入外源DNA片段而获得新的表型的过程。 从本质上讲,和转化没有根本的区别。无论是转染还是转化,其关键因素都是用氯化钙处理细菌或培养细胞,以提高细胞膜的通透性,从而使外源DNA或RNA能够容易进入细胞内部。所以在习惯上,人们往往也通称转染为
膀胱切除术后尿流改道和重建技术
治疗某些恶性(如膀胱癌,结肠直肠癌)或非恶性疾病(如出生缺陷,创伤,神经系统疾病)需要切除膀胱(膀胱切除术)。膀胱切除术后,需要通过尿流改道和重建程序重新定向尿液。依靠**括约肌的控制,是第一个广泛使用的尿流改道手术技术。然而,其有用性受限于肾功能随时间的恶化,代谢并发症和继发性乙状结肠癌的发展。较
组织修复过程介绍
组织修复过程可分三个阶段: (1)局部炎症反应阶段:受伤后伤口和组织裂隙先为血凝块所充填,继而发生炎症时继续有纤维蛋白附加其间。其功用首先是止血和封闭创面,可减轻损伤。 (2)细胞增殖分化和肉芽组织生成阶段:创伤性炎症出现不久,即可有新生的细胞在局部出现。成纤维细胞、内皮细胞
液压支架立柱的激光修复过程及修复优点
随着现代工业的不断发展,液压支架立柱作为一种重要的支护结构,在各个工业领域得到了广泛的应用。但由于长期使用和磨损,液压支架立柱会发生损坏和失效,这不仅会影响生产线的正常运行,还会对生产安全构成潜在威胁。因此,液压支架立柱的维修和保养显得尤为重要。 在液压支架立柱的修复中,激光修复技术是一种新型高
新术式能更好修复切除后的喉返神经
近日,复旦大学附属肿瘤医院头颈外科教授嵇庆海、王玉龙领衔团队,在全球首发自主设计的一个全新喉返神经修复手术的“中国术式”。相关研究成果以封面文章发表在国际头颈肿瘤协会联合会(IFHNOS)、国际口腔肿瘤学院官方杂志《头与颈》上。 目前,手术是根治甲状腺癌的主要治疗方法。对于发现时甲状腺癌已对外
关于DNA损伤的修复方式暗修复的过程介绍
暗修复又称切除修复(excision repair)是活细胞内一种用于对被UV等诱变剂损伤后DNA的修复方式之一,这是一种不依赖可见光,只通过酶切作用去除嘧啶二聚体,随后重新合成一段正常DNA链的核酸修复方式,在整个修复过程中,共有四种酶参与: ①内切核酸酶在胸腺嘧啶二聚体的5‘一侧切开一个3
土壤修复技术之-玻璃化修复技术
玻璃化技术源于20世纪五六十年代核废料的玻璃化处理技术,近年来该技术被推广到污染土壤的治理,1991年美国爱达荷州工程实验室把各种重金属废物及挥发性有机组分填埋于地下0.66m后,使用原位玻璃化技术,证明了该技术可行性。 该技术分原位和异位两种。 一、原位玻璃化技术 原理:通过向污染土壤插
内窥镜下粘膜切除技术
内窥镜粘膜切除术(EMR)技术可大致分为两组:吸吮(吸吮)和非吸痰(提升切割)技术。无论切除技术如何,粘膜下注射通常用于将黏膜和粘膜下病变与固有肌层分开;然而,食道中的EMR越来越多地在没有粘膜下注射的情况下进行。粘膜下注射-粘膜下注射产生破坏性粘膜下水肿(SFC)可降低EMR期间穿孔的发生率。注射
巨大下唇癌切除术后缺损修复诊疗分析
唇癌的发病率约占口腔癌的12%~15%,其中95%发生于下唇,以鳞状细胞癌(squamous cell carcinoma)最常见,其发病与日光暴晒、烟草刺激、HPV感染、自身免疫抑制等有关。下唇鳞状细胞癌切除术后的缺损修复不仅需考虑功能,还需考虑美观。目前修复下唇鳞状细胞癌术后的缺损有多种方法。本
嘧啶核苷酸的补救合成反应过程
主要酶是嘧啶磷酸核糖转移酶,能利用尿嘧啶、胸腺嘧啶及乳氢酸作为底物,对胞嘧啶不起作用。
嘌呤核苷酸的从头合成过程
早在1948年,Buchanan等采用同位素标记不同化合物喂养鸽子,并测定排出的尿酸中标记原子的位置的同位素示踪技术,证实合成嘌呤的前身物为:氨基酸(甘氨酸、天门冬氨酸(天冬氨酸)、和谷氨酰胺)、CO2和一碳单位(N10甲酰FH4,N、N10-甲炔FH4)。随后,由Buchanan和Greenber
核苷酸的分解代谢过程
嘌呤核苷酸在体内进行分解代谢,经脱氨基作用生成次黄嘌呤及黄嘌呤,再在黄嘌呤氧代酶催化下,经过氧化作用,最终生成尿酸。尿酸可随尿排出体外,正常人每日尿酸排出量为0.6g。嘧啶核苷酸在体内的分解产物为CO2,β-丙氨酸及β-氨基异丁酸等。
脱氧核苷酸的合成过程介绍
二磷酸脱氧核糖核苷的生成在二磷酸核苷(NDP,N代表A、G、U、C、T等碱基)水平上直接还原,即以氢取代其核糖分子中C-2的羟基而成的,催化此反应的酶是核糖核苷酸还原酶(ribonucleotide re-ductase,RR)。 脱氧胸腺嘧啶核苷酸的合成首先,dUDP转换为dUMP,有几条途径:一
利用核苷酸交换和剪切技术进行DNA碎裂和定向
利用核苷酸交换和剪切技术进行DNA碎裂和定向进化 实验材料 T4 DNA 连接酶 感受态细胞
常规转染技术的分类和选择
常规转染技术可分为两大类,一类是瞬时转染,一类是稳定转染(永久转染)。前者外源DNA/RNA不整合到宿主染色体中,因此一个宿主细胞中可存在多个拷贝数,产生高水平的表达,但通常只持续几天,多用于启动子和其它调控元件的分析。一般来说,超螺旋质粒DNA转染效率较高,在转染后24-72小时内(依赖于各种不同
5'核苷酸酶检查过程
1.按表1操作。 2.混合后5min,用680nm波长比色,以蒸馏水调零,读取各管吸光度。
土壤修复技术和产品将迎黄金期
6月26日,在山东潍坊举办的全国土壤修复技术成果分享高峰论坛上,业界专家指出,土壤修复是农业发展的持续动力,一批修复技术和产品将迎黄金期。要加快为农民合作社、种植大户和农资从业人员普及推广土壤修复的知识和技术,推动我国农业持续健康发展。 近年来,随着工业快速发展、农业粗放式生产,我国土壤面源污
脱氧核苷酸的生成的反应过程
体内的脱氧核苷酸是通过各自相应的核糖核苷酸在二磷酸水平上还原而成的。核糖核苷酸还原酶催化此反应。
脱氧核苷酸的生成的反应过程
①嘌呤类似物:6-巯基嘌呤(6MP)、6-巯基鸟嘌呤、8-氮杂鸟嘌呤等。6MP应用较多,其结构与次黄嘌呤相似,可在体内经磷酸核糖化而生成6MP核苷酸,并以这种形式抑制IMP转变为AMP及GMP的反应。②氨基酸类似物:氮杂丝氨酸和6-重氮-5-氧正亮氨酸等。结构与谷氨酰胺相似,可干扰谷氨酰胺在嘌呤核苷
骨髓巨核细胞数和分类的检查过程
检查方法:骨髓检查 检查过程: (1) 选择穿刺部位 (2) 麻醉 (3) 固定穿刺针长度 (4) 医生左手拇指和示指固定穿刺部位,右手持骨髓穿刺针与骨面垂直刺入,若为胸骨穿刺则应与骨面成30°-40°角刺入。当穿刺针针尖接触骨质后,沿穿刺针的针体长轴左右旋转穿刺针,并向前推进,缓缓刺
骨髓巨核细胞数和分类的检查过程
检查方法:骨髓检查 检查过程: (1) 选择穿刺部位 (2) 麻醉 (3) 固定穿刺针长度 (4) 医生左手拇指和示指固定穿刺部位,右手持骨髓穿刺针与骨面垂直刺入,若为胸骨穿刺则应与骨面成30°-40°角刺入。当穿刺针针尖接触骨质后,沿穿刺针的针体长轴左右旋转穿刺针,并向前推进,缓缓刺
基因敲入技术介绍和技术分类
基因敲入(gene knock in)是利用基因同源重组,将外源有功能基因(基因组原先不存在、或已失活的基因),转入细胞与基因组中的同源序列进行同源重组,插入到基因组中,在细胞内获得表达的技术。基因敲入有两种,一种是原位敲入,即在原基因敲除的位点插入新基因,它是基因敲除的逆过程;另一种是定点敲入,即
基因组所郭彩霞研究员在CELL上发表“快照”文章
近日,中国科学院北京基因组研究所DNA损伤耐受与突变研究组郭彩霞研究员在CELL上发表了快照文章:核苷酸切除修复(SnapShot:Nucleotide Excision Repair)。文章以概略图加上主题内容简介及推荐10篇相关文献的形式,简明扼要的归纳了DNA损伤修复过程中,
基因扩增技术原理和过程
PCR扩增DNA的原理是:先将含有所需扩增分析序列的靶DNA双链经热变性处理解开为两个寡聚核苷酸单链,然后加入一对根据已知DNA序列由人工合成的与所扩增的DNA两端邻近序列互补的寡聚核苷酸片段作为引物,即左右引物。此引物范围就在包括所欲扩增的DNA片段,一般需20-30个碱基对,过少则难保持与DNA