中心法则的起源
中心法则的信息是从DNA到RNA,但是,谢平(2014)指出,从生命起源和演化的历史来看,信息的整合则必定是从mRNA到DNA 。从RNA到DNA的演化之路在细胞起源的早期,为了适应细胞的分裂行为,遗传物质的有效传递成为必须,因此,细胞中储存在各种m-RNA中的遗传信息的整合必须成为选择的方向,把所有m-RNA的信息连接起来,就是向DNA方向发展的启航。也许可以认为,随着蛋白质的增多,mRNA也相应增多,偶尔一个整合性的mRNA长链更好地匹配了细胞的分裂行为,这样就会得到选择。但是,并不是把m-RNA拼接起来就是DNA,实际上,结构成份发生了两个变化,其一,RNA分子中的尿嘧啶,在DNA中变成了胸腺嘧啶,虽然两者仅有细微的差别,即后者多了一个甲基;其二,RNA分子中的核糖在DNA中变成了脱氧核糖。但是这两个变化却导致了两种核酸在形态上的显著差别:DNA形成双螺旋的结构,而绝大部分RNA分子都是线状单链,虽然RNA分子......阅读全文
中心法则的起源
中心法则的信息是从DNA到RNA,但是,谢平(2014)指出,从生命起源和演化的历史来看,信息的整合则必定是从mRNA到DNA 。从RNA到DNA的演化之路在细胞起源的早期,为了适应细胞的分裂行为,遗传物质的有效传递成为必须,因此,细胞中储存在各种m-RNA中的遗传信息的整合必须成为选择的方向,把所
中心法则的起源
中心法则的信息是从DNA到RNA,但是,谢平(2014)指出,从生命起源和演化的历史来看,信息的整合则必定是从mRNA到DNA 。从RNA到DNA的演化之路在细胞起源的早期,为了适应细胞的分裂行为,遗传物质的有效传递成为必须,因此,细胞中储存在各种m-RNA中的遗传信息的整合必须成为选择的方向,把
关于中心法则的起源的介绍
中心法则的信息是从DNA到RNA,但是,谢平(2014)指出,从生命起源和演化的历史来看,信息的整合则必定是从mRNA到DNA 。 从RNA到DNA的演化之路 在细胞起源的早期,为了适应细胞的分裂行为,遗传物质的有效传递成为必须,因此,细胞中储存在各种m-RNA中的遗传信息的整合必须成为选择
生物学中心法则的起源
中心法则的信息是从DNA到RNA,但是,谢平(2014)指出,从生命起源和演化的历史来看,信息的整合则必定是从mRNA到DNA 。从RNA到DNA的演化之路在细胞起源的早期,为了适应细胞的分裂行为,遗传物质的有效传递成为必须,因此,细胞中储存在各种m-RNA中的遗传信息的整合必须成为选择的方向,把所
中心法则的基因表达
关系基因指导蛋白质合成;基因控制生物体;生物体性状由蛋白质直接体现。调控方法a.基因通过控制酶的合成来控制代谢过程,进而控制生物体性状;b.基因通过指导蛋白质的合成,控制蛋白质结构进而直接控制生物体的性状。
生物学中心法则的作用
中心法则是现代生物学中最重要最基本的规律之一, 其在探索生命现象的本质及普遍规律方面起了巨大的作用,极大地推动了现代生物学的发展,是现代生物学的理论基石,并为生物学基础理论的统一指明了方向,在生物科学发展过程中占有重要地位。 遗传物质可以是DNA,也可以是RNA。细胞的遗传物质都是DNA,只有一些病
关于中心法则的基因表达的介绍
关系 基因指导蛋白质合成;基因控制生物体;生物体性状由蛋白质直接体现。 调控方法 a.基因通过控制酶的合成来控制代谢过程,进而控制生物体性状; b.基因通过指导蛋白质的合成,控制蛋白质结构进而直接控制生物体的性状。
质谱仪的起源
分离和检测不同同位素的仪器。仪器的主要装置放在真空中。将物质气化、电离成离子束,经电压加速和聚焦,然后通过磁场电场区,不同质量的离子受到磁场电场的偏转不同,聚焦在不同的位置,从而获得不同同位素的质量谱。质谱方法最早于1913年由J.J.汤姆孙确定,以后经 F.W.阿斯顿等人改进完善。现代质谱仪经过不
PCR-的起源
聚合酶链式反应(英文:Polymerase chain reaction,缩写:PCR,又称多聚酶链式反应),是一项利用 DNA 双链复制的原理,在生物体外复制特定 DNA 片段的核酸合成技术。这项技术可在短时间内大量扩增目的基因,而不必依赖大肠杆菌或酵母菌等生物体。 诺贝尔化学奖得主凯利·穆
核膜的起源
根据对核膜比较基因组学、进化、起源的研究,有科学家提出了原始真核生物“前核生物”(prekaryote)假说,认为其与古菌内共生最终触发了核膜产生。 对于核膜的研究则给出了几个核膜来源的观点,包括原核生物祖先的质膜内陷,或在原生宿主中建立原线粒体后形成真正的新膜系统。 至于核膜的适应性功能,
中心法则的蛋白质扩充原则
翻译后修饰对于大部份的蛋白质来说,这是蛋白质生物合成的最后步骤。蛋白质的翻译后修饰会附上其他的生物化学官能团、改变氨基酸的化学性质,或是造成结构的改变来扩阔蛋白质的功能。酶可以从蛋白质的N末端移除氨基酸,或从中间将肽链剪开。举例来说,胰岛素是肽的激素,它会在建立双硫键后被剪开两次,并在链的中间移走多
遗传信息的中心法则简介
遗传信息在细胞内的生物大分子间转移的基本法则。包含在脱氧核糖核酸(DNA)或核糖核酸(RNA)分子中的具有功能意义的核苷酸顺序称为遗传信息。遗传信息的转移包括核酸分子间的转移、核酸和蛋白质分子间的转移。1957年F.H.C.克里克最初提出的中心法则是:DNA→RNA→蛋白质。它说明遗传信息在不同的大
遗传信息的中心法则的作用
中心法则是现代生物学中最重要最基本的规律之一, 其在探索生命现象的本质及普遍规律方面起了巨大的作用,极大地推动了现代生物学的发展,是现代生物学的理论基石,并为生物学基础理论的统一指明了方向,在生物科学发展过程中占有重要地位。遗传物质可以是DNA,也可以是RNA。细胞的遗传物质都是DNA,只有一些病毒
关于中心法则的扩充的基本内容
克里克在上述那篇1970年的文章中指出,中心法则虽然对指导实验很有用,但不应该被当成教条: “虽然本文所提出的各类法则看来是可靠的,可是我们对分子生物学的认识,即使只是一个细胞—更不用说大自然里的整个生命体—仍然远远未完备到,足以让我们把它当成教条一样肯定正确的程度” ——克里克 自从克里
遗传信息的中心法则的意义
由此可见,遗传信息并不一定是从DNA单向地流向RNA,RNA携带的遗传信息同样也可以流向DNA。但是DNA和RNA中包含的遗传信息只是单向地流向蛋白质,迄今为止还没有发现蛋白质的信息逆向地流向核酸。这种遗传信息的流向,就是克里克概括的中心法则(central dogma)的遗传学意义。任何一种假设都
什么是遗传信息的中心法则?
中心法则(英语:genetic central dogma),又译成分子生物学的中心教条(英语:The central dogma of molecular biology),首先由弗朗西斯·克里克于1958年提出,并于1970年在《自然》上的一篇文章中重申:“The central dogma o
病毒的起源之谜
这特么到底是啥?研究不同生物之间关联的科学家每天都在问这个问题。其答案并不简单,但很重要。生物联系不仅用来制作生命的目录,还有助于理解生命演化为不同形式的进化历程。 病毒是一个极佳的例子。病毒没有细胞结构,因此无法被归类为三种生命域中的任何一种——细菌,古生菌(另一种形式的微生物)及真核生物(
分子进化的起源
在漫长的进化过程中生物的 DNA经历了各种各样的变化。包括基因突变、基因重组、染色体易位等。碱基置换突变常导致蛋白质中一个氨基酸的改变。例如正常血红蛋白第 6位的谷氨酸改变为缬氨酸便成为镰形细胞贫血症的血红蛋白 HbS,为赖氨酸替代则成为HbC,前者的碱基是从GAA(谷氨酸)→GUA(缬氨酸),后者
T细胞的起源
所有的T细胞都来源于造血干细胞(HSC),造血干细胞之后会分化为多能祖细胞(MPP),多能祖细胞又会分化为共同淋巴祖细胞(CLP),CLP接下来只有三种分化路径,即T细胞、B细胞和NK细胞。 那些分化为T细胞的CLP将会随着血流到达胸腺,并成为早期胸腺祖细胞(ETP),现在这些细胞既不表达CD也不表
冻干机的历史起源
起源 冻干机起源于19世纪20年代的真空冷冻干燥技术经历了几十年的起伏和徘徊后,在最后的20年中取得了长足进展。进入21世纪,真空冻干技术凭借其它干燥方法无法比拟的优点,越来越受到人们的青睐,除了在医药、生物制品、食品、血液制品、活性物质领域得到广泛应用外,其应用规模和领域还在不断扩大中。为此
癌症耐药的起源
在过去几十年癌症治疗中,对肿瘤高特异性的靶向药物对癌症治疗起到了非常重要的作用。目前, EGFR突变肺癌是一种常见的家族遗传癌症(白血病和恶性黑色素瘤也是家族遗传癌症,这些癌症都基于在患者体内一些抑癌基因失活或突变而导致肿瘤的发生、发展)。所以,开发出有针对性的靶向药物可以有效地控制这些遗传癌症
有性生殖的起源
有性生殖是如何起源的(即为什么有性)?这样一个看似简单的问题不仅令达尔文困惑不已,150年过去了, 人们都还未找到一个普遍认可的理论, 这也被称为是进化生物学问题之皇后“ queen of problems in evolutionary biology” (Bell, 1982)。法国著名的遗传学
单倍体基因的起源
人类基因组中的单倍型源于人类有性生殖的分子机制和我们作为一个物种的历史。除性细胞外,染色体在人类细胞中成对出现。其中一条染色体来自父方,另一条来自母方。但染色体在一代代的传递过程中并不是一成不变的。在精子和卵细胞形成的过程中,染色体对发生重组,即一对染色体中聚集到一起并交换片段。由此产生的杂合染色体
肠道的进化起源
消化系统、皮肤、肌肉组织是如何进化的呢?这个问题困扰了科学家一个多世纪。维也纳大学的研究人员对海葵(一种非常古老的动物)胚胎发育的研究结果质疑了150年前提出的形成所有器官和组织的胚层具有同源性的假说。 该假说认为,身体中所有的器官和组织都来源于三个胚层之一,这些胚层在胚胎形成早期出现。这
关于生物分子中心法则的基因编码的介绍
哺乳动物细胞里的基因编码产生一种糖蛋白PrP。人的PrP基因位于20号染色体短臂,PrP由253个氨基酸残基组成,在氨基端有22个氨基酸组成的信号 肽。在正常脑组织中的PrP称为PrPc,相对分子质量为33 000~35 000,对蛋白酶敏感。在病变脑组织中的PrP称为PrPsc,相对分子质量为
分子生物学中心法则的概念
是指遗传信息从DNA传递给RNA,再从RNA传递给蛋白质,即完成遗传信息的转录和翻译的过程。也可以从DNA传递给DNA,即完成DNA的复制过程。这是所有有细胞结构的生物所遵循的法则。在某些病毒中的RNA自我复制(如烟草花叶病毒等)和在某些病毒中能以RNA为模板逆转录成DNA的过程(某些致癌病毒)是对
分子生物学的中心法则介绍
中心法则(英语:genetic central dogma),又译成分子生物学的中心教条(英语:The central dogma of molecular biology),首先由弗朗西斯·克里克于1958年提出,并于1970年在《自然》上的一篇文章中重申:“The central dogma o
分子生物学的中心法则的作用
中心法则是现代生物学中最重要最基本的规律之一, 其在探索生命现象的本质及普遍规律方面起了巨大的作用,极大地推动了现代生物学的发展,是现代生物学的理论基石,并为生物学基础理论的统一指明了方向,在生物科学发展过程中占有重要地位。 [3] 遗传物质可以是DNA,也可以是RNA。细胞的遗传物质都是DNA
色谱法的起源
色谱法起源于20世纪初,1906年俄国植物学家米哈伊尔·茨维特用碳酸钙填充竖立的玻璃管,以石油醚洗脱植物色素的提取液,经过一段时间洗脱之后,植物色素在碳酸钙柱中实现分离,由一条色带分散为数条平行的色带。由于这一实验将混合的植物色素分离为不同的色带,因此茨维特将这种方法命名为Хроматография
核糖体的起源
核糖体可能最初起源于RNA,看起来像一个自我复制的复合体,只是有在氨基酸出现后才进化具有合成蛋白质的能力。将核糖体从古老的自我复制机器演变为其当前形式的翻译机器的驱动力可能是将蛋白质结合到核糖体的自我复制机制中的选择压力,这种转变增加了其自我复制的能力[26]。