PCR单链构象多态性分析

PCR -单链构象多态性分析(PCR -single strand conformation analysis,PCR -SSCP) 是近年来在基因突变检测中运用最广泛的方法之一。PCR -SSCP 技术凭借突变可引起单链DNA三级构象改变,通过观察单链DNA在非变性聚丙烯酰胺凝胶中的迁移率漂移来判断突变。样品经PCR 扩增后,其产物经变性后可以产生2 条单链,如果存在基因突变,哪怕是一个碱基的异常,单链的构象也会发生变化,正常与突变的DNA单链在聚丙烯酰胺凝胶电泳(PAGE) 中,可以显现出不同的带型,从而确定野生型和突变型,PCR -SSCP 分析的主要优点是简易且敏感性较高。但是该技术不能确定突变的部位和性质。PCR -SSCP 突变检测敏感性随PCR 产物长度的增加而降低,一般用于检测较小外显子的突变。有时由于单个核苷酸变化所引起的构象改变很小,用PAGE 电泳就可能无法检出,在PCR 产物或待测DNA 小于200 ......阅读全文

PCRSSCP(聚合酶链反应单链构象多态)实验步骤

一. 样品的制备1. 设计引物。用Oliga6.0对目的基因进行分析,设定引物,引物长度18-21个碱基,扩增片段以200-300bp最为合适。2. PCR扩增并检测。根据不同的引物挑选适合的退火温度进行PCR扩增。扩增产物用2-2.5%的琼脂糖胶跑水平电泳检测,上样量3-5ul。PCR产物为 10

双链构象多态分析法介绍

  双链构象多态分析(double -strand conformation analysis,DSCA) 是利用荧光标记引物,通过PCR 扩增出相关的研究片段作为荧光标记参照(fluorescence labeled reference,FLR)DNA分子。然后,用标记参照物FLR 分子与待测PC

构象异构体的分子链构象

晶体中的高分子链构象晶体中的分子链构象有螺旋形构象、平面锯齿形构象等。1、两个原子或基团之间距离小于范德华半径之和时,将产生排斥作用。2、分子链在晶体中的构象,取决于分子链上所带基团的相互排斥或吸引作用的情况。3、有规立构高分子链在形成晶体时,在条件许可下总是尽量形成时能最低的构象形式。4、基本结构

基因多态性的检测方法

1.限制性片段长度多态性(Restriction Fragment Length Polymorphism,RFLP):由DNA 的多态性,致使DNA 分子的限制酶切位点及数目发生改变,用限制酶切割基因组时,所产生的片段数目和每个片段的长度就不同,即所谓的限制性片段长度多态性,导致限制片段长度发生改

SNP的检测方法(直接测序法与PCRSSCP)

人类基因组中存在着广泛的多态性,最简单的多态形式是发生在基因组中的单个核苷酸的替代,即单核苷酸多态性(single nucleotide polymorphisms, SNPs)。SNP通常是一种二等位基因的(biallelic),即二态的遗传变异,SNP的数量大、分布广,在组成人类基因组的

SNP的检测知识

SNP的检测知识:人类基因组中存在着广泛的多态性,最简单的多态形式是发生在基因组中的单个核苷酸的替代,即单核苷酸多态性(single nucleotide polymorphisms, SNPs)。SNP通常是一种二等位基因的(biallelic),即二态的遗传变异,SNP的数量大、分布广,在组成人

基因诊断的方法有哪几种

基因诊断(gene diagnosis)是以探测基因的存在,分析基因的类型和缺陷及其表达功能是否正常,从而达到诊断疾病的一种方法。它是继形态学、生物化学和免疫学诊断之后的第四代诊断技术,它的诞生与发展得益于分子生物学理论和技术的迅速发展。  常用基因诊断技术:  一、Southern印迹法(Sout

核酸突变检测技术

基因突变是指由于DNA碱基对的置换、增添或缺失而引起的基因结构的变化,亦称点突变。它的分类方式包括1)根据基因结构的改变方式,基因突变可分为碱基置换突变和移码突变两种类型;2)根据遗传信息的改变方式,基因突变又可以分为同义突变、错义突变和无义突变三种类型。基因突变的检测方法:从基因突变的性质来看,检

分子生物学技术的分类

  目前,常用的分子生物学技术有如下几种[1]:  PCR单链构象多态性分析  PCR-单链构象多态性分析(PCR -single strand conformation analysis,PCR -SSCP) 是近年来在基因突变检测中运用最广泛的方法之一。PCR -SSCP 技术凭借突变可引起单链

特异引物的PCR标记的相关介绍

  特异引物的PCR标记所用引物是针对已知序列的 DNA 区段而设计的,具有特定核苷酸序列(通常为 18—24 bp),可在常规PCR复性温度下进行扩增,对基因组 DNA 的特定区域进行多态性分析。  ①序列标志位点  (Sequence Tagged Sites,STS)  STS是对以特定对引物

分子生物学技术的分类

目前,常用的分子生物学技术有如下几种 : PCR- 单链构象多态性分析(PCR- single strand conformation analysis,PCR- SSCP) 是近年来在基因突变检测中运用最广泛的方法之一。PCR- SSCP 技术凭借突变可引起单链DNA三级构象改变,通过观察单链DN

微流控芯片在基因分析中的作用

人类基因组计划的提前完成得益于阵列毛细管电泳等先进检测技术的发展。在后基因组时代,新的检测技术仍将发挥引领作用,其中微流控芯片技术将是最有发展前途的技术之一。那么微流控芯片当前在基因分析中的主要应用表现为以下情况。    一、聚合酶链反应聚合酶链反应(Polymerase China Reactio

HLA抗原的检测(二)

  (四)HLA-DP抗原的检测  HLA-DP抗原的检测可采用预处理淋巴细胞分型试验(primed lymphocyte typing test,PLT)基本步骤是首先取有一个单倍体相同的两个个体的淋巴细胞进行混合培养,这在双亲与子女间很容易找到,如亲代a/b,子代a/c。先将a/c经X线照射

PCRSSCP的原理特点、操作方法和应用1

随着分子生物学技术的发展,检测基因结构和突变的方法不断涌现.尤其是PCR技术问 世以后,各种与PCR相结合的基因检测技术进一步推动了基因研究的发展.如不对称 PCR产物的直接测序、核糖核酸酶酶切法(Ribonuclease cleavage,RNAase)、限制性 片段长度多态性分析(Res

基因多态性的检测方法概述

多态性(polymorphism)是指处于随机婚配的群体中,同一基因位点可存在2种以上的基因型。在人群中,个体间基因的核苷酸序列存在着差异性称为基因(DNA)的多态性(gene polymorphism)。这种多态性可以分为两类,即DNA位点多态性(site polymorphism)和长度多态性

基因多态性的检测方法

多态性(polymorphism)是指处于随机婚配的群体中,同一基因位点可存在2种以上的基因型。在人群中,个体间基因的核苷酸序列存在着差异性称为基因(DNA)的多态性(gene polymorphism)。这种多态性可以分为两类,即DNA位点多态性(site polymorphism)和长度多态性

关于分子生物学分型方法的基本介绍

  在序列特异性引物(SSP)存在的条件下,用已知的一段DNA与从细胞核提取的DNA混合,通过PCR扩增技术可获得序列特异性寡核苷酸(SSO)。目前HLA-DNA分型均以PCR技术为基础,主要包括:聚合酶链反应寡核苷酸探针杂交(PCR/SSO)、顺序特异引物聚合酶链反应技术(PCR/SSP)、限制性

分子生物学分型法有哪些?

(一)RFLP与PCR-RFLP分型法 限制性片段长度多态性(RFLP)分析,称为DNA-RFLP。DNA片段进行体外扩增,然后再用限制性内切酶进行酶切分析,可使限制性长度分析的敏感度增加,此类方法称为PCR-RFLP分型法。PCR-RFLP分型法所应用的PCR引物为HLA组特异性的,此法特别适应于

关于遗传多态现象的现多态性介绍

  1、遗传多态现象的现多态性— 扩增片段长度(AFLP)多态性标记:AFLP是将PCR技术与RFLP结合的一种方法,通过对基因组DNA酶切片段的选择性扩增来检测DNA酶切片段长度的多态性。  2、遗传多态现象的现多态性— 微卫星多态性标记(SSRP):基于PCR技术的DNA标记,多态性是由同一座位

毛细管电泳色谱仪分析基因突变的方法

基因突变分析是遗传性疾病基因诊断和致病基因分离鉴定的基础,突变是一个或多个脱氧核糖核苷酸的构成、复制或表形功能的异常变化,即遗传物质结构改变引起遗传信息改变。随着对疾病病因和发病机制研究的不断深入,人类对疾病的认识逐渐深入到基因诊断的水平,传统技术多用琼脂糖凝胶电泳和聚丙烯酰胺凝胶电泳分离野生型DN

PCRSSCP原理及应用

随着分子生物学技术的发展,检测基因结构和突变的方法不断涌现.尤其是PCR技术问 世以后,各种与PCR相结合的基因检测技术进一步推动了基因研究的发展.如不对称 PCR产物的直接测序、核糖核酸酶酶切法(Ribonuclease cleavage,RNAase)、限制性 片段长度多态性分析(Restric

常用基因诊断技术

   当细胞的基因组DNA用特定的内切酶如Eco RⅠ切割时,凡有GAATTC的地方都被切开,得到许多长度一定但互不相等的片段,需要分析、分离的基因或DNA片段就在其中某一特定的的片段上。  然而许多长短不同的DNA片段混合在一起是很难分析的。因此首先必需将它们按大小(长短)分离开来,这可借助凝胶电

基因诊断的常用技术

综述当细胞的基因组DNA用特定的内切酶如Eco RⅠ切割时, 基因诊断凡有GAATTC的地方都被切开,得到许多长度一定但互不相等的片段,需要分析、分离的基因或DNA片段就在其中某一特定的的片段上。 然而许多长短不同的DNA片段混合在一起是很难分析的。因此首先必需将它们按大小(长短)分离开来,这可借助

毛细管电泳色谱仪在基因突变分析中的应用

毛细管电泳色谱仪简称毛细管电泳仪(CE),是以毛细管为分离通道,以高压直流电场为驱动力,利用荷电粒子之间的淌度差异和分配系数差异进行分离,是分析科学继液相色谱仪之后的又一重大进展,使分析科学从微升级进入到了纳升级水平,不仅使单细胞乃至单分子分析成为可能,也使蛋白质和核酸等生物大分子分析有了新的转机。

高效毛细管电泳仪在核酸分析中的应用

        高效毛细管电泳仪(CE)是以毛细管为分离通道,以高压直流电场为驱动力,利用荷电粒子之间的淌度差异和分配系数差异进行分离,是分析科学继高效液相色谱仪之后的又一重大进展,使分析科学从微升级进入到了纳升级水平,不仅使单细胞乃至单分子分析成为可能,也使蛋白质和核酸等生物大分子分析有了新的转机

毛细管电泳仪在核酸分析中的应用

毛细管电泳仪(CE)是以毛细管为分离通道,以高压直流电场为驱动力,利用荷电粒子之间的淌度差异和分配系数差异进行分离,是分析科学继液相色谱仪之后的又一重大进展,使分析科学从微升级进入到了纳升级水平,不仅使单细胞乃至单分子分析成为可能,也使蛋白质和核酸等生物大分子分析有了新的转机。一、在DNA测序中的应

高效毛细管电泳仪在核酸分析中的应用

         高效毛细管电泳仪(CE)是以毛细管为分离通道,以高压直流电场为驱动力,利用荷电粒子之间的淌度差异和分配系数差异进行分离,是分析科学继高效液相色谱仪之后的又一重大进展,使分析科学从微升级进入到了纳升级水平,不仅使单细胞乃至单分子分析成为可能,也使蛋白质和核酸等生物大分子分析有了新的转

关于HLA分型的DNA分型方法介绍

  DNA分型主要分为两种方法:基于核酸序列识别的方法和基于序列分子构型的方法,常用的方法大致可分为大类:  ①限制性片段长度多态性分析(restriction fragment length polymorphism,RFP)。其原理是不同的DNA膜板山于序列的差异在限制性内切酶作用下将被切成大小

变性高效液相色谱技术

变性高效液相色谱 (denaturing high performance liquid chromatography, DHPLC)是一项在单链构象多态性 (SSCP)和变性梯度凝胶电泳 (DGGE)基础上发展起来的新的杂合双链突变检测技术,可自动检测单碱基替代及小片段核苷酸的插入或缺失。DHPL

PCR技术(十二):PCRSSCP的发展现状

随着分子生物学技术的发展,检测基因结构和突变的方法不断涌现.尤其是PCR技术问 世以后,各种与PCR相结合的基因检测技术进一步推动了基因研究的发展.如不对称 PCR产物的直接测序、核糖核酸酶酶切法(Ribonuclease cleavage,RNAase)、限制性 片段长度多态性分析(Restric