关于端粒的发现历史简介

科学家们在寻找导致细胞死亡的基因时,发现了一种叫端粒的存在于染色体顶端的物质。端粒本身没有任何密码功能,它就像一顶高帽子置于染色体头上。 在新细胞中,细胞每分裂一次,染色体顶端的端粒就缩短一次,当端粒不能再缩短时,细胞就无法继续分裂了。这时候细胞也就到了普遍认为的分裂100次的极限并开始死亡。因此,端粒被科学家们视为“生命时钟”。 科学家由此又开始研究精子和癌细胞内的染色体端粒是如何长时间不被缩短的原因。 1984年,分子生物学家在对单细胞生物进行研究后,发现了一种能维持端粒长度的端粒酶,并揭示了它在人体内的奇特作用:除了人类生殖细胞和部分体细胞外,端粒酶几乎对其他所有细胞不起作用,但它却能维持癌细胞端粒的长度,使其无限制扩增。 早在30年代,缪勒(Muller)和麦克林托克(Meclintock)等就已发现了端粒结构的存在。 1978年,四膜虫的端粒结构首先被测定。 1990年起,凯文·哈里(Calvin Ha......阅读全文

关于端粒的发现历史简介

  科学家们在寻找导致细胞死亡的基因时,发现了一种叫端粒的存在于染色体顶端的物质。端粒本身没有任何密码功能,它就像一顶高帽子置于染色体头上。  在新细胞中,细胞每分裂一次,染色体顶端的端粒就缩短一次,当端粒不能再缩短时,细胞就无法继续分裂了。这时候细胞也就到了普遍认为的分裂100次的极限并开始死亡。

端粒的功能简介

  稳定染色体末端结构,防止染色体间末端连接,并可补偿滞后链5'末端在消除RNA引物后造成的空缺。  组织培养的细胞证明,端粒在决定动植物细胞的寿命中起着重要作用,经过多代培养的老化细胞端粒变短,染色体也变得不稳定。  细胞分裂次数越多,其端粒磨损越多,细胞寿命越短。

关于地塞米松的历史简介

  1958年,Arth与Oliveto等分别合成了地塞米松,1960年Merck & Co.生产地塞米松磷酸钠,上市的地塞米松衍生物已达12种以上。  地塞米松的化学结构为泼尼松龙的B环9α位引入氟原子,D环16α位引入甲基;9α氟及16α甲基均使其抗炎活性显著增强,而16α甲基则显著地降低了地塞

关于乙烯的发现历史介绍

  中国古代就发现将果实放在燃烧香烛的房子里可以促进采摘果实的成熟。19世纪德国人发现在泄露的煤气管道旁的树叶容易脱落。第一个发现植物材料能产生一种气体,并对邻近植物能产生影响的是卡曾斯,他发现橘子产生的气体能催熟与其混装在一起的香蕉。直到1934年甘恩(Gane)才首先证明植物组织确实能产生乙烯。

关于核酸的发现历史的介绍

  核酸最早于1869年由瑞士医生和生物学家弗雷德里希·米歇尔分离获得,称为Nuclein。  在19世纪80年代早期,德国生物化学学家,1910年诺贝尔生理和医学奖获得者科塞尔进一步纯化获得核酸,发现了它的强酸性。他后来也确定了核碱基。  1889年,德国病理学家Richard Altmann创造

关于干燥技术的历史简介

  二次世界大战以后,军队和政府开始广泛地进行有关脱水食品的实验。当时,人们对于脱水食品的味道和营养就有了更大的期望,大家都指望有一种更好的方法,使食品保存得更长久一些,同时,人们对食用方便性也有了更高的要求,既要保存原味、质地,又要保留营养成份,但是,人们的要求又与科学技术所能达到的水平有一定的距

关于裂隙灯的历史简介

  1911年瑞典的眼科学家Gullstrand发明了著名的眼科检查仪器“裂隙灯”(Slit lamp),1920年vogt加以改进使其功能更加完善,成为了今天的裂隙灯蓝本。  1950年中国开始研制裂隙灯,1967年上海医用光学仪器厂率先试制成功。同年苏州医疗器械厂亦成功的设计制造出了裂隙灯,并且

关于PCR技术的历史简介

  Khorana (1971)等最早提出核酸体外扩增的设想:“经DNA变性,与合适的引物杂交,用DNA聚合酶延伸引物,并不断重复该过程便可合成tRNA基因。”  但由于当时基因序列分析方法尚未成熟,热稳定DNA聚合酶尚未报道以及引物合成的困难,这种想法似乎没有实际意义。加上70年代初分子克隆技术的

关于基因剪接的历史发现介绍

  1972年,加州大学旧金山分校的微生物学家赫伯特·伯耶(Herbert Boyer)、斯坦福大学的研究员史坦利·科恩(Stanley Cohen)在火奴鲁鲁参加学术会议时在一家现成食品店里遇到了对方。他们一边吃着熏牛肉三明治,一边构思除了一个开创了现代生物技术产业的实验。回到加州后,这两个人成功

关于X射线的发现历史介绍

  1895年11月8日傍晚,他研究阴极射线。为了防止外界光线对放电管的影响,也为了不使管内的可见光漏出管外,他把房间全部弄黑,还用黑色硬纸给放电管做了个封套。为了检查封套是否漏光,他给放电管接上电源(茹科夫线圈的电极),他看到封套没有漏光而满意。可是当他切断电源后,却意外地发现一米以外的一个小工作

关于转座因子的发现历史介绍

  在50年代以前,人们对于基因的认识一般是每一个基因组的DNA的量是固定的,它包括数目固定,位置固定、功能固定的一系列基因,以保持生物性状能稳定地遗传下去。但同时,基因也会发生突变。一般自发突变的频率是很低的,当然也存在着高突变频率的现象,这说明在基因组中存在高度不稳定的基因,很长时间人们忽视了这

关于重叠基因的历史发现介绍

  重叠基因 是在1977年发现的。早在1913年A.H.斯特蒂文特已在果蝇中证明了基因在染色体上作线状排列,50年代对基因精细结构和顺反位置效应等研究的结果也说明基因在染色体上是一个接着一个排列而并不重叠。但是1977年F.桑格在测定噬菌体ΦX174的DNA的全部核苷酸序列时,却意外地发现基因D中

关于微RNA的历史发现介绍

  MicroRNA(miRNA)是一类内生的、长度约20-24个核苷酸的小RNA,其在细胞内具有多种重要的调节作用。每个miRNA可以有多个靶基因,而几个miRNAs也可以调节同一个基因。这种复杂的调节网络既可以通过一个miRNA来调控多个基因的表达,也可以通过几个miRNAs的组合来精细调控某个

关于锂元素的发现历史-介绍

  第一块锂矿石,透锂长石(LiAlSi4O10)是由巴西人在名为Utö的瑞典小岛上发现的,于18世纪90年代。当把它扔到火里时会发出浓烈的深红色火焰,斯德哥尔摩的Johan August Arfvedson分析了它并推断它含有以前未知的金属,他把它称作lithium(锂)。他意识到这是一种新的碱金

关于原电池的发现历史介绍

  原电池的发明历史可追溯到18世纪末期,当时意大利生物学家伽伐尼正在进行著名的青蛙实验,当用金属手术刀接触蛙腿时,发现蛙腿会抽搐。大名鼎鼎的伏特认为这是金属与蛙腿组织液(电解质溶液)之间产生的电流刺激造成的。1800年,伏特据此设计出了被称为伏打电堆的装置,锌为负极,银为正极,用盐水作电解质溶液。

关于元素汞的发现历史介绍

  汞在自然界中分布量极小,被认为是稀有金属,但是人们很早就发现了水银。天然的硫化汞又称为朱砂,由于具有鲜红的色泽,因而很早就被人们用作红色颜料。根据殷虚出土的甲骨文上涂有丹砂,可以证明中国在有史以前就使用了天然的硫化汞。  根据中国古文献记载:在秦始皇死以前,一些王侯在墓葬中也早已使用了灌输水银,

关于EB病毒的发现历史介绍

  1964年 Epstein等首先发现本病毒,而命名为 EpsteinBarr virus(EB病毒)。EB病毒是一种嗜淋巴细胞的人疱疹病毒。只有B淋巴细胞才有EB病毒受体。EB病毒侵入B细胞后,可以呈产毒性感染,即可使细胞产生早期抗原,以及病毒复制,释放病毒颗粒。亦可呈非产毒性感染,即在细胞内中

关于元素碳的发现历史介绍

  碳的英文名称carbon来源于拉丁文中煤和木炭的名称carbo,也来源于法语中的charbon,意思是木炭。 [1] 在德国、荷兰和丹麦,碳的名字分别是Kohlenstoff、koolstof、kulstof,字面意思是煤物质。  碳在史前就已被发现,炭黑和煤是人类最早使用碳的形式。钻石大约在公

关于糖酵解的发现历史介绍

  1897年,德国生化学家E.毕希纳发现离开活体的酿酶具有活性以后,极大地促进了生物体内糖代谢的研究。酿酶发现后的几年之内,就揭示了糖酵解是动植物和微生物体内普遍存在的过程。英国的F.G.霍普金斯等于1907年发现肌肉收缩同乳酸生成有直接关系。英国生理学家A.V.希尔,德国的生物化学家O.迈尔霍夫

关于组蛋白的历史发现介绍

  1884年,艾布瑞契·科塞尔首先发现组蛋白。 [4-5]直至1990年代早期,组蛋白才被更多认识,并非纯粹细胞核的惰性填充料,这部分基于马克·普塔什尼(Mark Ptashne)等人的模型,他们认为转录是被蛋白质-DNA和蛋白质-蛋白质相互作用在很大程度上被激活裸DNA模板,就像细菌一样。及后它

关于端粒的组成

  端粒DNA是由简单的DNA高度重复序列组成的,染色体末端沿着5'到3' 方向的链富含 GT。在酵母和人体中,端粒序列分别为C1-3A/TG1-3和TTAGGG/CCCTAA,并有许多蛋白与端粒DNA结合。  端粒DNA主要功能有:  第一,保护染色体不被核酸酶降解;  第二,防止

关于电子鼻的发展历史简介

  1964年,Wilkens和Hatman利用气体在电极上的氧化一还原反应对嗅觉过程进行了电子模拟,这是关于电子鼻的最早报道。  1965年,Buck等利用金属和半导体电导的变化对气体进行了测量,Dravieks等则利用接触电势的变化实现了气体的测量。  然而,作为气体分类用的智能化学传感器阵列的

关于鼓风机的历史简介

  扇、吹管和皮囊,最早用于强制鼓风的器具是扇和吹管。古埃及金匠曾使用带陶风嘴的吹管,印加人有时用8~12根铜管同时吹炼。稍后,发明了用兽皮制作的鼓风皮囊,囊的两端分设风管和由操作者手控的进风口。这种简陋的鼓风器在近代仍在一些地区使用。埃及第十八王朝勒克米尔(Rekhmir,约公元前1450年)墓的

关于安瓿瓶的历史简介

  在那不勒斯,每年的9月19日举行会举行一个持续了几百年的仪式:圣·热内罗之圣血(the Blood Miracle of San Gennaro)。在那不勒斯大教堂里,一个据称是公元305年前,盛满了圣·热内罗——贝内维托(Benevento)主教之血的安瓿,放在他的胸口旁边。经过“圣·热内罗之

关于神经毒素的历史简介

  神经毒素是从民用有机磷农药杀虫剂发展而来,1935年德国学者成功地研制出速效有机磷农药杀虫剂──塔崩。由于意外事故,研究者中毒而出现一系列胆功能衰竭,这才意识到塔崩对人体有巨大的毒性;此时正值第二次世界大战,塔崩很快被用于军事战争并发挥了巨大的作用。原本为农药杀虫剂在战争中使用后便成为军用毒剂。

生化与细胞所研究发现端粒酶保护端粒的机制

  端粒是位于真核生物线性染色体末端的由DNA和蛋白质组成的复合物结构,它对于基因组的完整性以及染色体的稳定性发挥着至关重要的作用,端粒DNA长度以及其结构的维持与细胞衰老和癌症发生密切相关。在有端粒酶活性的细胞中,端粒酶途径是端粒DNA长度维持的主要机制;当端粒酶缺失时,细胞也可以通

关于肠道病毒的历史发现介绍

  于1997年造成偶蹄动物感染之口蹄疫病毒也与肠道病毒一样同属于微小病毒科(picornaviridae),因此,当1998年台湾地区肠道病毒大流行时,便有舆论认为引起人类手足口病(hand  -foot and mouth disease;HFMD)主要是由于对感染口蹄疫的病死猪做掩埋处理不当因

关于拉曼光谱的历史发现介绍

  1928年C.V.拉曼实验发现,当光穿过透明介质被分子散射的光发生频率变化,这一现象称为拉曼散射,同年稍后在苏联和法国也被观察到。在透明介质的散射光谱中,频率与入射光频率υ0相同的成分称为瑞利散射;频率对称分布在υ0两侧的谱线或谱带υ0±υ1即为拉曼光谱,其中频率较小的成分υ0-υ1又称为斯托克

关于催化剂的历史发现介绍

  催化剂最早由瑞典化学家贝采里乌斯发现。100多年前,有个魔术“神杯”的故事。  有一天,瑞典化学家贝采里乌斯在化学实验室忙碌地进行着实验,傍晚,他的妻子玛利亚准备了酒菜宴请亲友,祝贺她的生日。贝采里乌斯沉浸在实验中,把这件事全忘了,直到玛丽亚把他从实验室拉出来,他才恍然大悟,匆忙地赶回家。一进屋

关于DNA双螺旋的历史发现介绍

  1953年4月25日,克里克和沃森在英国杂志《自然》上公开了他们的DNA模型。经过在剑桥大学的深入学习后,两人将DNA的结构描述为双螺旋,在双螺旋的两部分之间,由四种化学物质组成的碱基对扁平环连结着。他们谦逊地暗示说,遗传物质可能就是通过它来复制的。这一设想的意味是令人震惊的:DNA恰恰就是传承