关于G蛋白偶联受体的功能特征介绍
G蛋白偶联受体参与众多生理过程。包括但不限于以下例子: 感光:视紫红质是一大类可以感光的G蛋白偶联受体。它们可以将电磁辐射信号转化成细胞内的化学信号,引导这一过程的反应称为光致异构化(Photoisomerization)。具体细节为:由视蛋白(Opsin)和辅因子视黄醛共价连接所构成的视紫红质在光源的刺激下,分子内的视黄醛会发生异构化,从“11-顺式”变成“全反式”,这个变化进一步引起视蛋白的构象变化从而激活与之偶联的G蛋白,引发下游的信号传递过程。 嗅觉:鼻腔内的嗅上皮(Olfactory epithelium)和犁鼻器上分布有很多嗅觉受体,可以感知气味分子和费洛蒙。 行为和情绪的调节:哺乳动物的脑内有很多掌控行为和情绪的神经递质对应的受体是G蛋白偶联受体,包括血清素,多巴胺,γ-氨基丁酸和谷氨酸等。 免疫系统的调节:很多趋化因子通过G蛋白偶联受体发挥作用,这些受体被统称为趋化因子受体。其它属于此类的G蛋白偶联受......阅读全文
G蛋白偶联受体信号通路相关PTCH1
这个基因编码一个补丁基因家族的成员。编码蛋白是声波刺猬(一种与胚胎结构形成和肿瘤发生有关的分泌分子)以及沙漠刺猬和印度刺猬蛋白的受体。这个基因作为肿瘤抑制因子发挥作用。这种基因的突变与基底细胞痣综合征、食管鳞状细胞癌、毛细胞瘤、膀胱移行细胞癌以及无脑畸形有关。选择性剪接导致编码不同亚型的多个转录变体
G蛋白偶联受体动态激活机制研究获进展
近日,中国科学院精密测量科学与技术创新研究院科研人员在G蛋白偶联受体动态激活机制研究方面取得进展。该研究集成全原子分子动力学模拟和核磁共振技术,解析了毒蕈碱型乙酰胆碱受体从非激活态向完全激活态转变的动态过程,揭示了芳香环动力学在G蛋白偶联受体激活过程中的核心作用。G蛋白偶联受体是人体最大的膜蛋白受体
G蛋白偶联受体信号通路相关GNA11
GNA11基因所编码的蛋白属于鸟嘌呤核苷酸结合蛋白(G蛋白)的家族,它在不同的跨膜信号系统中作为调节器或传感器。这个基因突变与II型高钙血症型和常染色体显性低血钙症。GNA11与GNAQ形成的复合物为G蛋白α亚基,这两个基因调控细胞分裂,增强MEK(有丝分裂原活化蛋白激酶的激酶)蛋白活性,在80%的
与--G蛋白偶联受体相关因子介绍NFE2L2
这个基因编码一个转录因子,它是碱性亮氨酸拉链(bzip)蛋白的一个小家族的成员。编码的转录因子调节启动子中含有抗氧化反应元件(are)的基因;其中许多基因编码参与对损伤和炎症反应的蛋白质,包括自由基的产生。编码不同亚型的多个转录变体已经被鉴定为该基因。[由RefSeq提供,2015年9月]This
G蛋白偶联受体——Novus神经生物学研究
G蛋白偶联受体(G-Protein-Coupled Receptors,GPCRs)是一大类膜蛋白受体的统称。这类受体的共同点是其立体结构中都有七个跨膜α螺旋,且其肽链的C端和连接第5和第6个跨膜螺旋的胞内环上都有G蛋白的结合位点。目前为止,研究显示G蛋白偶联受体只见于真核生物之中,而且参与了许多细
以G蛋白偶联受体为靶点的多肽药物研发
G蛋白偶联受体(G Protein-Coupled Receptors, GPCRs)是人体内最大的一类蛋白家族。GPCR广泛参与生理过程的调控,与多种疾病相关,且结构上有结合口袋,是很好的成药位点。目前已有超过475种以GPCR为靶点的药物获批上市,销售额占整体药物市场的27%。 GPCR是
Nature子刊:G蛋白偶联受体的关键一步
G蛋白偶联受体(GPCR)是细胞表面的一种重要受体,介导细胞外信号的跨膜传递。GPCR识别信号之后,是怎样通过构象改变启动细胞内部应答的呢? EPFL的科学家们通过计算机建模,向人们展示了GPCR结构转变的详细过程。他们发现,GPCR内部会形成一个持续性的水通道,这一步骤是信号跨膜传递的关键。
G蛋白耦联型受体的功能简介
G蛋白耦联型受体介导的信号转导可通过不同的通路产生不同的效应,但信号转导的基本模式大致相同,主要过程包括: (1)配体与受体结合; (2)受体活化G蛋白; (3)G蛋白激活或抑制下游效应分子; (4)效应分子改变细胞内第二信使的含量与分布; (5)第二信使作用于相应的靶分子,使之构象改
科学家揭开B型G蛋白偶联受体真面目
来自美国斯克利普斯研究所和中国国家新药筛选中心/中科院上海药物所等研究机构的科学家,在国际上首次解析了胰高血糖素受体7次跨膜区域的三维分子结构,从而改变了长期以来在B型G蛋白偶联受体结构研究方面所遭遇的困境。这是我国科学家作为主体研究者之一在阐明重大疾病药物作用靶点的分子结构方面所取得的重大研究
G蛋白偶联受体信号通路相关NFE2L2
这个基因编码一个转录因子,它是碱性亮氨酸拉链(bzip)蛋白的一个小家族的成员。编码的转录因子调节启动子中含有抗氧化反应元件(are)的基因;其中许多基因编码参与对损伤和炎症反应的蛋白质,包括自由基的产生。编码不同亚型的多个转录变体已经被鉴定为该基因。[由RefSeq提供,2015年9月]This
科研人员首次发现G蛋白偶联受体分子识别机制
中科院上海药物研究所蒋华良课题组和王明伟课题组与美国、荷兰、丹麦等国科学家合作,提出了G蛋白偶联受体(GPCR)胞外段与跨膜区的动态变化模式,发现了该受体存在“开放”和“关闭”两种分子构象,从而为其本身以及其他B型G蛋白偶联受体的全长结构解析、功能研究和药物发现奠定了基础。相关研究7
研究揭示多肽与G蛋白偶联受体配对的信号系统
近日,澳大利亚莫纳什大学等科研机构的科研人员在Cell上发表了题为“Discovery of Human Signaling Systems: Pairing Peptides to G Protein-Coupled Receptors”的文章,发现了多肽与G蛋白偶联受体配对的信号系统。 肽
G蛋白偶联受体信号通路激活的MAPK/Erk信号通路图
研究证实,受体酪氨酸激酶、G蛋白偶联的受体和部分细胞因子受体均可激活ERK信号转导途径。如:生长因子与细胞膜上的特异受体结合,可使受体形成二聚体,二聚化的受体使其自身酪氨酸激酶被激活;受体上磷酸化的酪氨酸又与位于胞膜上的生长因子受体结合蛋白2(Grb2)的SH2结构域相结合,而Grb2的SH3结构域
G蛋白偶联受体信号通路激活的MAPK/Erk信号通路图
研究证实,受体酪氨酸激酶、G蛋白偶联的受体和部分细胞因子受体均可激活ERK信号转导途径。如:生长因子与细胞膜上的特异受体结合,可使受体形成二聚体,二聚化的受体使其自身酪氨酸激酶被激活;受体上磷酸化的酪氨酸又与位于胞膜上的生长因子受体结合蛋白2(Grb2)的SH2结构域相结合,而Grb2的SH3结构域
G蛋白偶联的结构特点
与G蛋白偶联的多种受体具有共同的结构功能特点:分子量40-50kDa左右,由350-500氨基酸组组成,形成7个由疏水氨基酸组成的α螺旋区段,反复7次穿越细胞膜的脂质双层。肽链的N末端在胞膜外,C末端在细胞内。N末端上常有许多糖基修饰。
上海药物所G蛋白偶联受体结构与功能研究取得突破性进展
3月21日,美国《科学》杂志(Science)同期发表两篇在线文章,介绍了中科院上海药物研究所徐华强课题组、蒋华良课题组、美国Scripps研究所Ray Stevens课题组、北卡罗那大学(UNC -Chapel Hill)Bryan Roth课题组的联合研究成果。该项研究成功解析了五羟
-Nature:科学家揭开B型G蛋白偶联受体真面目
来自美国斯克利普斯研究所和中国国家新药筛选中心、中科院上海药物所等研究机构的科学家,在国际上首次解析了胰高血糖素受体7次跨膜区域的三维分子结构,从而改变了长期以来在B型G蛋白偶联受体结构研究方面所遭遇的困境。这是我国科学家作为主体研究者之一在阐明重大疾病药物作用靶点的分子结构方面所取得的重大研究
粘附类G蛋白偶联受体激活通用机制研究获突破
aGPCR与Stachel序列相关的激活模式 Stachel序列与ADGRG2的相互作用模式 a. Stachel序列激活的ADGRG2-β-Gs复合物结构模型。b. Stachel序列成“U
粘附类G蛋白偶联受体激活通用机制研究获突破
aGPCR与Stachel序列相关的激活模式 Stachel序列与ADGRG2的相互作用模式 a. Stachel序列激活的ADGRG2-β-Gs复合物结构模型。b. Stachel序列成“U”型构型结合于ADGRG2七次跨膜螺旋形成的口袋中,并且沿底部开口方向分割
联合团队揭示苦味受体配体识别和G蛋白偶联机制
7月5日,中科中山药物创新研究院研究员段佳课题组、李翼课题组联合中国科学院上海药物研究所研究员徐华强课题组、杨德华课题组,报道了非甾体抗炎药物氟芬那酸改造化合物Compound 28.1(Cpd 28.1)结合苦味受体TAS2R14分别偶联Ggust和Gi复合物结构,揭示了苦味受体独特的双口袋配体识
特殊G蛋白偶联受体-作为开发新型癌症药物的关键靶点
近日,一项刊登在国际杂志Nature Communications上的研究报告中,来自瑞典卡罗琳学院的研究人员通过研究揭示了癌症突变影响细胞膜表面特定类型受体的分子机制,相关研究或为开发治疗特定类型癌症的个体化药物疗法提供新的思路,比如直肠癌和肺癌等。 文章中,研究者重点对一类名为Clas
金长文团队揭示G蛋白偶联受体多样性的分子机制
2019年5月15日,Molecular Cell在线发表了题为“Conformational Complexity and Dynamics in a Muscarinic Receptor Revealed by NMR Spectroscopy”的研究论文,报道了应用液体核磁共振方法研究M
新的计算方法来设计热稳定的G蛋白偶联受体
来自俄罗斯莫斯科物理科学与技术研究所(MIPT)、斯科尔科沃科学技术研究所(Skoltech)和美国南加州大学(USC)的研究人员开发出一种新的计算方法来设计热稳定的G蛋白偶联受体(GPCR),这对开发新药有很大帮助。经证实这种方法可用于获得几种主要人类受体的结构。对这种新方法的概述发表在201
科学家攻克G蛋白偶联受体信号转导重大科学难题
中科院上海药物研究所研究员徐华强领衔的交叉团队,利用冷冻电镜技术成功解析视紫红质与抑制型G蛋白(Gi)复合物的近原子分辨率结构,攻克了细胞信号转导领域的重大科学难题。6月14日,相关研究成果在线发表于《自然》。 GPCR是最大的一类细胞跨膜信号转导受体家族和最重要的药物靶标,其通过偶联下游G蛋白
科学家攻克G蛋白偶联受体信号转导重大科学难题
中科院上海药物研究所研究员徐华强领衔的交叉团队,利用冷冻电镜技术成功解析视紫红质与抑制型G蛋白(Gi)复合物的近原子分辨率结构,攻克了细胞信号转导领域的重大科学难题。6月14日,相关研究成果在线发表于《自然》。 GPCR是最大的一类细胞跨膜信号转导受体家族和最重要的药物靶标,其通过偶联下游G蛋
G蛋白耦联型受体的组成介绍
受体 受体在结构上均为单体蛋白,由约300~400个氨基酸残基组成,有一个由30-50个氨基酸组成的细胞外N-末端,接着在肽链中出现7个α螺旋的跨膜结构,每个疏水跨膜区段由20~25个氨基酸组成,但各区段之间由数目不等的氨基酸组成的环状结构连接,其中1-2,3-4,5-6环在胞内侧,2-3,4
G蛋白耦联受体的分类
A类(或第一类,视紫红质样受体)B类(或第二类,分泌素受体家族)C类(或第三类,代谢型谷氨酸受体)D类(或第四类,真菌交配信息素受体)E类(或第五类,环腺苷酸受体)F类(或第六类,Frizzled/Smoothened家族)其中第一类即视紫红质样受体包含了绝大多数种类的G蛋白耦联受体。它被进一步分为
华中科技大学付琴博士JBC解析G蛋白偶联受体
G蛋白偶联受体是一个备受瞩目的蛋白大家族,这些蛋白位于细胞膜中,负责将激素和神经递质等外部信号传入细胞,触发一系列的生化反应。 G蛋白偶联受体与人类健康密切相关,据统计约40%的现代药物都以这类蛋白为靶标。与GPCR有关的疾病包括:高血压、哮喘、精神分裂症和帕金森症。正因为这类蛋白非常重要,G
Cell:纤毛G蛋白偶联受体与细胞外囊泡之间信号转导调控
纤毛(cilium)是一种细胞表面比细胞小5000倍的小仓室,集中了Hedgehog信号传导、视觉、嗅觉和体重稳态的受体。通过维持其自身的第二信使环状AMP(cAMP)和Ca2+的浓度,纤毛为信号分子提供了独特的反应条件,这些信号分子在通路激活时动态进入和离开纤毛。例如,Hedgehog通路的激
关于解偶联蛋白的成分介绍
哺乳动物中有五种已知的解偶联蛋白: 增温素(又名UCP1) UCP2 UCP3 SLC25A27(又名UCP4) SLC25A14(又名UCP5) 解偶联蛋白在生理学上有其特定的作用,冬眠动物以及新生动物利用解偶联蛋白,可以将部分本用于制造ATP的能量转化为热量。然而,其他物质如2,