什么是质谱仪?它的主要功能有哪些
分离和检测不同同位素的仪器。即根据带电粒子在电磁场中能够偏转的原理,按物质原子、分子或分子碎片的质量差异进行分离和检测物质组成的一类仪器。质谱仪以离子源、质量分析器和离子检测器为核心。离子源是使试样分子在高真空条件下离子化的装置。电离后的分子因接受了过多的能量会进一步碎裂成较小质量的多种碎片离子和中性粒子。它们在加速电场作用下获取具有相同能量的平均动能而进入质量分析器。质量分析器是将同时进入其中的不同质量的离子,按质荷比m/z大小分离的装置。分离后的离子依次进入离子检测器,采集放大离子信号,经计算机处理,绘制成质谱图。离子源、质量分析器和离子检测器都各有多种类型。质谱仪按应用范围分为同位素质谱仪、无机质谱仪和有机质谱仪;按分辨本领分为高分辨、中分辨和低分辨质谱仪;按工作原理分为静态仪器和动态仪器。 分离和检测不同同位素的仪器。仪器的主要装置放在真空中。将物质气化、电离成离子束,经电压加速和聚焦,然后通过磁场电场区,不同质量的离子......阅读全文
质谱仪是如何工作的
稳定同位素质谱部分的核心是离子源,操作人员对附件设备做任何操作之前必须先考虑保护离子源。1、设备配置IRMS系统部件主要由系统主机、三个外设、两个接口和一个工作站组成。①主机:即质谱仪,由离子源、质量分析器、检测器、电气系统以及真空系统组成。②三个外设包括:燃烧型元素分析仪(Flash EA1112
国产质谱仪的行业进展
质谱仪是一类将物质粒子(原子、分子)电离成离子,通过适当电场或磁场将它们分离,并检测其强度从而进行定性、定量分析的仪器。由于质谱仪具有直接测量的本质特征,以及高分辨、高灵敏、大通量和高准确度的特性,在生命科学、材料科学、食品安全、环境监测、医疗卫生、国家安全及国际反恐等领域具有不可替代的作用和举
质谱仪的构成及原理
质谱仪是如何构成的呀? 典型的质谱仪,一般由样品导入系统、离子源、质量分析器和检测器组成,此外,还含有真空系统和控制及数据处理系统等辅助设备。 离和检测不同同位素的仪器。即根据带电粒子在电磁场中能够偏转的原理,按物质原子、分子或分子碎片的质量差异进行分离和检测物质组成的一类仪器。质谱仪按应用
质谱仪的原理是什么
质谱仪原理是用高能电子流等轰击样品分子,使该分子失去电子变为带正电荷的分子离子和碎片离子。这些不同离子具有不同的质量,质量不同的离子在磁场的作用下到达检测器的时间不同,其结果为质谱图。质谱仪以离子源、质量分析器和离子检测器为核心。离子源是使试样分子在高真空条件下离子化的装置。电离后的分子因接受了过多
同位素比例质谱仪
同位素比例质谱仪是一种用于环境科学技术及资源科学技术领域的分析仪器,于2017年12月27日启用。 技术指标 1、由DELTA V同位素质谱仪主机及EA-Isolink 元素分析仪和气相色谱仪组成; 2、可用于总体及单一化合物C、N同位素分析; 3、主机测试质量范围达1~80道尔顿,质量
布鲁克推出-timsTOF-Pro质谱仪
[导读] 2017年9月18日,在第十六届人类蛋白质组学年度世界大会(HUPO)上,Bruker推出了用于PASEF质谱的timsTOF Pro系统。该质谱采用了专有捕获离子迁移谱(TIMS)技术,能实现更高速度、更高灵敏、更强大的鸟枪法蛋白质组学分析,具有出色的单次肽和蛋白质鉴定性能。
质谱仪器的真空要求
质谱仪器的真空要求质谱仪器必须在良好的真空条件下才能正常操作,一般要求质量分析器的真空优于10-4pa。质谱仪器所检测的离子必须要有较大的自由程才可以到达检测器,其他气体成分也可能与离子发生反应影响检测,在质谱仪中工作的部件(如离子源灯丝、较密排布的高压极板)需要在高真空下才能稳定工作。因此,质谱仪
浅析质谱仪的工作原理
质谱仪是分离和检测不同同位素的仪器。仪器的主要装置放在真空中。将物质气化、电离成离子束,经电压加速和聚焦,然后通过磁场电场区,不同质量的离子受到磁场电场的偏转不同,聚焦在不同的位置,从而获得不同同位素的质量谱。 质谱分析法主要是通过对样品的离子的质荷比的分析而实现对样品进行定性和定量
质谱仪有辐射强吗
质谱有辐射,电离辐射很严重;质谱难免要用有机溶剂,对身体也会有伤害,尤其女性;噪音污染亦不可忽视;还要考虑到对质谱仪的保护,人多进出质谱室,会加大灰尘等对仪器的污染。基于以上原因,一般采取计算机控制系统与仪器分隔放置,中间放以可视玻璃。
高分辨磁质谱仪简介
高分辨磁质谱仪是一种用于食品科学技术领域的分析仪器,于2012年5月10日启用。 技术指标 最高分辨率: 80,000(10%峰谷定义) 灵敏度:在最高灵敏度模式(即使用HR/SIR方式),分辨率为10,000(10%峰谷定义),进样100 fg 2,3,7,8-TCDD,将在m/z 321
无机质谱仪的相关叙述
无机质谱仪 火花源双聚焦质谱仪。 电感耦合等离子体质谱仪(ICP-MS)。 二次离子质谱仪(SIMS) 辉光放电质谱仪(GDMS) 但以上的分类并不十分严谨。因为有些仪器带有不同附件,具有不同功能。例如,一台气相色谱-双聚焦质谱仪,如果改用快原子轰击电离源,就不再是气相色谱-质谱联用仪
质谱仪的组成及介绍
质谱仪的组成:真空系统、进样系统、离子源或电离室、质量分析器、离子检测器。1、真空系统作用,是减少离子碰撞损失。若真空度低:大量氧会烧坏离子源的灯丝;会使本底增高,干扰质谱图;引起额外的离子-分子反应,改变裂解模型,使质谱解释复杂化;干扰离子源中电子束的正常调节;用作加速离子的几千伏高压会引起放电等
质谱仪有机质谱仪基本工作原理、主要用途和应用范围
有机质谱仪基本工作原理:以电子轰击或其他的方式使被测物质离子化,形成各种质荷比(m/e)的离子,然后利用电磁学原理使离子按不同的质荷比分离并测量各种离子的强度,从而确定被测物质的分子量和结构。有机质谱仪主要用于有机化合物的结构鉴定,它能提供化合物的分子量、元素组成以及官能团等结构信息。分为四极杆质谱
质谱仪同位素比质谱仪对同位素标准物质的要求
同位素比质谱仪对同位素标准物质的一般要求是: 1、组成均一性质稳定; 2、数量较多,以便长期使用; 3、化学制备和同位素测量的手续简便; 4、大致为天然同位素比值变化范围的中值,便用于绝大多数样品的测定; 5、可以做为世界范围的零点。
QMS质谱仪器的优缺点
优点: 结构简单、成本低; 维护简单; SIM功能的定量能力强; 是多数检测标准中采用的仪器设备。 缺点: 无串极能力,定性能力不足; 分辨力较低(单位分辨),存在同位素和其他m/z近似的离子干扰; 速度慢; 质量上限低(小于1200u)。
有机质谱仪基本工作原理
有机质谱仪基本工作原理:以电子轰击或其他的方式使被测物质离子化,形成各种质荷比(m/e)的离子,然后利用电磁学原理使离子按不同的质荷比分离并测量各种离子的强度,从而确定被测物质的分子量和结构。
有机质谱仪的应用范围
可广泛用于有机化学、生物学、地球化学、核工业、材料科学、环境科学、医学卫生、食品化学、石油化工等领域以及空间技术和公安工作等特种分析方面。
有机质谱仪的样品准备
适合分析相对分子质量为 50 ~ 2000u 的液体、固体有机化合物样品,试样应尽可能为纯净的单一组分。
质谱仪对溶液有什么要求
分离和检测不同同位素的仪器。仪器的主要装置放在真空中。将物质气化、电离成离子束,经电压加速和聚焦,然后通过磁场电场区,不同质量的离子受到磁场电场的偏转不同,聚焦在不同的位置,从而获得不同同位素的质量谱。质谱方法最早于1913年由J.J.汤姆孙确定,以后经 F.W.阿斯顿等人改进完善。现代质谱仪经过不
仪器简介/同位素质谱仪
新一代DELTA V系列同位素质谱仪基于单片电路分析框架,并不仅仅是对以往机型的重新设计,且体积更小。独特的分析平台与固定结合离子光学组件,对实现前所未有的分析能力,效率和可靠性迈出了一大步。它配置灵活,可适用于不同领域的使用要求。
质谱仪分离分析的共同特点
质谱仪分离分析的共同特点:1、所有质谱仪检测的都是离子的质量数。2、所有质谱仪的分离依据都是离子的质荷比 m/z。3、所有质谱仪检测的都是气态离子。4、所有质谱仪都必须在高真空状态下操作。
质谱仪的离子化方式
质谱仪的离子化方式有:1、电子轰击电离。2、化学电离。3、场电离。4、场解吸电离。5、快原子轰击电离。6、基质辅助激光解吸电离。7、电喷雾电离。8、大气压化学电离等。
傅里叶变换如何用于质谱仪
目前利用傅立叶变换的质谱仪有三种,傅立叶变换磁质谱仪,傅立叶变换轨道阱质谱仪,傅立叶变换超导磁质谱仪,有ZL表明也可以做到傅立叶变换飞行时间质谱仪。傅立叶变换是建立在数学算法上的,利用规律性的电场或磁场的变化,加大带电粒子的区分度
四极杆质谱仪分类方法
四极杆质谱仪种类有多种。1、按分析目的可分:实验室四极杆质谱仪和工业四极杆质谱仪。2、按质量分析器的工作状态可分:静态四极杆质谱仪和动态四极杆质谱仪。3、按进样方式可分:直接探针进样四极杆质谱仪和色谱进样四极杆质谱仪等。4、按离子化方式可分:电子轰击电离四极杆质谱仪、化学电离四极杆质谱仪、场电离四极
线性离子阱质谱仪的用途
广泛应用于可预测和不可预测代谢物的检测,并可以使用同重元素标记法进行肽定量分析。
转移反应质谱仪的主要部件
质子转移反应质谱仪:进样管负责将气态目标物引入到分子–离子反应腔中。离子源:常用设计是利用空心阴极对水蒸气进行放电,产生高纯度的H3O+离子。质子转移反应区(漂移管):漂移管中的压强、温度和电场确保试剂离子在一个稳定的微环境下将待测物分子电离 [1] 。最新款PTR-MS的创新之处在漂移管上叠加了
离子阱质谱仪的相关概述
在离子阱质谱仪(Ion trap, IT)中,可以捕获离子,因此也可以积累离子。离子阱技术具有无法比拟的高灵敏度和快速数据采集能力。将离子阱技术与数据依赖性采集技术(data-dependent acquisition)结合起来,我们就能进行高通量的质谱检测。 不过,离子阱质谱仪的分辨率有限,
质谱仪的离子化方式
1、电子轰击电离。2、化学电离。3、场电离。4、场解吸电离。5、快原子轰击电离。6、基质辅助激光解吸电离。7、电喷雾电离。8、大气压化学电离等。
数字离子阱质谱仪糖肽分析
聚糖是蛋白质的一种翻译后修饰产物,是一类拥有高结构异质性的分子,由葡萄糖、甘露糖和其他单糖复合键形成。已知此类复杂结构与蛋白质调节功能相关,且可根据不同疾病和其他因素,产生各种不同现象。其中包括蛋白质主链出现异常聚糖结构,并且可能在认为应该发生此类键合的位点却不存在聚糖键。关于复杂聚糖结构和聚糖
质谱仪的主要优点有哪些?
质谱仪的主要优点包括: 1、满足从简单到复杂基质中所有分子类型的分析的极高灵敏度; 2、出色的仪器稳定性确保在提高数据可靠性的同时不损失仪器正常运行时间; 3、超快的选择反应监测(SRM)能够在更短时间内增加分子定量的数量; 4、与专业应用软件紧密集成,提高了所有应用领域的工作效率; 5