微生物发酵封闭式连续发酵
在封闭式连续发酵系统中,运用某种方法使细胞一直保持在生物反应器内,并使其数量不断增加。这种条件下,某些限制因素在生物反应器中发生变化,最后大部分细胞死亡。因此在这种系统中,不可能维持稳定状态。封闭式连续发酵可以用开放式连续发酵设备加以改装,只要使用部分菌体重新循环。另一种方法是采用间隔物或填充物置于设备内,使菌体在上面生长,发酵液流出时不带细胞或所带细胞极少。 透析膜连续发酵是一个新方法,它是采用一种具有微孔的有机膜将发酵设备分隔,这种膜只能通过发酵产物,而不能通过菌体细胞。这样,将培养液连续流加到发酵设备的具有菌体的间隔中,微生物的代谢产物就通过透析膜连续不断地从另一间隔流出。在一些发酵过程中,当发酵液中代谢产物积累到一定程度时就会抑制它的继续积累,而采用透析膜发酵的方法可使代谢产物不断透析出去,发酵液中留下不多,因而可以提高产物得率。......阅读全文
微生物糖发酵(生化)试验
实验概要本文介绍了单糖发酵试验、V-P(Voges-Proskauer)试验、甲基红试验、枸橼酸盐利用试验、靛基质(Indol)试验、硫化氢(H2S)产生试验、尿素分解试验、及氧化酶试验的原理和基本方法。实验原理1. 单糖发酵是将葡萄糖,乳糖或麦芽糖等分别加入蛋白胨水培养基内,使其最终浓度为0.75
微生物的糖发酵实验
一、单糖发酵试验(一)、实验原理单糖发酵是将葡萄糖,乳糖或麦芽糖等分别加入蛋白胨水培养基内,使其最终浓度为 0.75~1%。并加入一定量酚红指示剂及小倒管,制成单糖发酵管,接种细菌经37℃培养18~24小时,若能分解糖产酸则酚红指示剂由红变黄,若能分解 甲酸有CO2和H2等气体形成,小倒管内
微生物的糖发酵试验
一、单糖发酵试验(一)、实验原理单糖发酵是将葡萄糖,乳糖或麦芽糖等分别加入蛋白胨水培养基内,使其最终浓度为 0.75~1%。并加入一定量酚红指示剂及小倒管,制成单糖发酵管,接种细菌经37℃培养18~24小时,若能分解糖产酸则酚红指示剂由红变黄,若能分解 甲酸有CO2和H2等气体形成,小倒管内
微生物糖发酵(生化)试验
一、单糖发酵试验 (一)、实验原理 单糖发酵是将葡萄糖,乳糖或麦芽糖等分别加入蛋白胨水培养基内,使其最终浓度为0.75~1%。并加入一定量酚红指示剂及小倒管,制成单糖发酵管,接种细菌经37℃培养18~24小时,若能分解糖产酸则酚红指示剂由红变黄,若能分解甲酸有CO2和H2等气体形成,小倒管内则聚集有
发酵罐和化工产品什么关系?
如果要问从发酵罐中能否生产化工产品?可以明确回答你:能。化工产品在人们心目中是从化工厂里生产出来的。但由于发酵工程的特殊性能和特殊作用,从发酵罐中提取化工产品已变得很容易了。乙醇是一种用途广泛的化工原料。乙醇就是发酵罐的产物。科学家预测,在21世纪中期,生产化工原料的一些传统合成方法将被发酵法所代替
发酵罐发酵技术在生产和科研上被广泛运用
发酵罐发酵主要操作方式:根据发酵过程操作方式将工业发酵分为三种模式,即间歇发酵,连续发酵和流加发酵。 (1)间歇发酵:是最常见的工业发酵方式,也称分批发酵或批式发酵。将发酵罐和培养基灭菌后,向发酵罐中接入种子、开始发酵过程。操作简单、不容易染菌、投资低;但生产能力低、劳动强度大产品质
发酵罐酒精捕集器在工作的时候有什么损失吗
发酵罐酒精捕集器在发酵过程中酒精蒸发损失量,一般为0.5%~0.8%。为了收集这些随同CO2混合逸出的酒精蒸气,可在发酵车间内设置酒精捕集器回收酒精。常用的酒精蒸气捕集器有填料式和泡盖式两种,其作用原理是:利用酒精能易被水所吸收溶解的这一特性,当含有酒精的二氧化碳混合气与水接触时,其中所含的酒精蒸气
现代微生物发酵工程技术介绍
⑴利用现代化的手段对微生物加以筛选和改造,以形成更符合工业生产需要的新菌种的工业微生物育种技术、其中渗透了基因工程、细胞工程的一些内容,经过改造的、满足人们需要的微生物菌种通常被称之为工程菌; ⑵微生物菌体的生产,即利用先进的生产工艺高速地对某种微生物进行大量的纯培养,即工程菌的克隆; ⑶从微
发酵罐独立型一体式结构
发酵罐主要由罐体,智能电控箱,高效过滤器,加热器,连接管配件,高效无油气泵(长寿命活塞式)等组成,液体菌种发酵罐中,液体菌种发酵罐为全封闭、立式结构的卫生洁净型容器设备,具有可加热、冷却、保温、搅拌功能。 发酵罐整机采用不锈钢镜面抛光板,减少热辐射,灭菌无死角;快开口式设计,利于操作与清洗
微生物发酵罐发酵菌体浓度和基质对发酵的影响及其控制
一、菌体浓度对发酵的影响及控制 菌体(细胞)浓度简称菌浓,是指单位体积培养液中菌体的含量。菌浓的大小,在一定条件下,不仅反映菌体细胞的多少,而且反映菌体细胞生理特性不完全相同的分化阶段。依靠调节培养基的浓度来控制菌浓。首先确定基础培养基配方中有个适当的配比,避免产生过浓(或过稀)的菌体量。然后通过
微生物发酵罐发酵过程中温度对发酵的影响及其控制
一、温度对发酵的影响 微生物发酵所用的菌体绝大多数是中温菌,如霉菌、放线菌和一般细菌。它们的最适生长温度一般在20~40℃。温度会影响各种酶反应的速率,改变菌体代谢产物的合成方向,影响微生物的代谢调控机制。影响发酵液的理化性质,进而影响发酵的动力学特性和产物的生物合成。在发酵过程中,需要维持适当的
利用微生物定向发酵技术成功研制军用发酵肉制品
记者今天从空军航空医学研究所获悉,历时3年研发完成的军用发酵肉制品项目成果日前通过专家鉴定,填补了我军发酵肉制品的空白,也让我军战时和突发事件时期肉食供应难题得以破解。 该研究所所长罗益昌告诉记者,长期以来,由于运输、储存、口味等因素制约,我军对战时和突发事件时期的肉食供应,一直以真空肉食罐头
微生物发酵罐发酵过程中泡沫的消除
一、调整培养基中的成分(如少加或缓加易起泡的原料)或改变某些物理化学参数(如pH值、温度、通气和搅拌)或者改变发酵工艺(如采用分次投料)来控制,以减少泡沫形成的机会。二、采用菌种选育的方法,筛选不产生流态泡沫的菌种,来消除起泡的内在因素。三、采用机械消泡或消泡剂来消除已形成的泡沫。 1、机械消泡
微生物发酵法制备亮氨酸
发酵法1987年德国学者Groegere采用添加前体物。一酮基异己酸生产L一亮氨酸,当培养基中添加前体物。一酮基异己酸的浓度为20g/L,谷氨酸棒杆菌ATCC 13032发酵57h,可生成16g/L L一亮氨酸,质量转化率91-96%;而采用分批流加培养法,可流加a一酮基异己酸32 g/L,发酵23
复合酶的微生物发酵方式
复合酶的生产主要通过以下3条途径:(1)单一酶复配;(2)产单一酶的多菌种混合发酵;(3)产多种酶的单一菌种发酵。单一酶复配法在洗涤剂工业中运用较成功,但购买单一成品酶成本太高不适于大规模的工业应用。多菌种混合发酵是一个生物混合体系,体系中的微生物之间大多具有生长代谢协调作用。目前,利用产多种酶的单
微生物发酵的应用领域
微生物发酵生产水平主要取决于菌种本身的遗传特性和培养条件。发酵工程的应用范围有: 医药工业,食品工业,能源工业,化学工业,农业:改造植物基因;生物固氮;工程杀虫菌生物农药;微生物饲料。环境保护等方面。 酒类 包括果酒、啤酒、白酒及其他酒均是利用酿酒酵母,在厌氧条件下进行发酵,将葡萄糖转化为
微生物发酵罐发酵过生中pH值对发酵的影响及其控制
一、pH值对发酵的影响 1、影响酶的活性,当pH值抑制菌体中某些酶的活性时,会阻碍菌体的新陈代谢; 2、影响微生物细胞膜所带电荷的状态,改变细胞膜的通透性,影响微生物对营养物的吸收和代谢产物的排泄; 3、影响培养基中某些组分的解离,进而微生物对这些成分的吸收 4、pH值不同,往往引起菌体代
微生物发酵罐发酵过程中泡沫的形成及其对发酵的影响
在大多数微生物发酵过程中,通气、搅拌以及代谢气体的逸出,再加上培养基中糖、蛋白质、代谢物等表面活性剂的存在,培养液中就形成了泡沫。泡沫的多少与搅拌、通风、培养基性质有关。蛋白质原料如蛋白胨、玉米浆、黄豆粉、酵母粉等是主要的发泡剂。糊精含量多也引起泡沫的形成。当发酵感染杂菌和噬菌体时,泡沫异常多。
发酵工程在各个领域有怎样的发展
发酵工程在各个领域有怎样的发展随着市场的发展,发酵工程的应用逐渐不再局限于啤酒的发展,在很多行业都有了广泛的应用,那么发酵工程在各个领域应用如何呢,下面我们看看相关内容。在医药行业微生物发酵是生物转化法之一,在中药中早有应用。真菌是发酵中药的主要功能菌。发酵时大都采用单一菌种纯种发酵法。现代中药发酵
封闭式电炉的优势
封闭式电炉的被广泛地应用于各大中学校、工矿企业、环保、医院、科学研究等单位的实验室和化验室,是常用的必备设备之一,也是家庭加热的理想电器。封闭式电炉是本厂生产的.是利用电能转换为热能的原理制造的,发热体被全封闭在绝缘耐高温材料中,外壳表面采用冷轧钢板,经耐温材料涂复,干净、防腐蚀、防油烟、便于清洗、
封闭式电炉产品特点
封闭式电炉是利用电能转换为热能的原理制造的,发热体被全封闭在绝缘耐高温材料中,外壳表面采用冷轧钢板,经耐温材料涂复,干净、防腐蚀、防油烟、便于清洗、清洁卫生。同时炉盘表面喷吐无毒不粘涂料,也可直接烘烤食物。它具有加热快、使用方便、热效率高、特别安全耐用等优点。 封闭式电炉通过电热丝来加热产生高温度
有哪些方法可以提高微生物絮凝剂的生产效率?
以下是一些可以提高微生物絮凝剂生产效率的方法:优化培养基成分:通过研究微生物的营养需求,调整培养基中碳源、氮源、无机盐和生长因子的种类和比例,提供充足且适宜的营养物质,促进微生物的生长和代谢,从而提高絮凝剂的产量。选育优良菌株:利用诱变育种、基因工程等技术,筛选和培育具有高产絮凝剂能力的微生物菌株。
发酵罐指工业上用来进行微生物发酵的装置
发酵罐指工业上用来进行微生物发酵的装置发酵罐指工业上用来进行微生物发酵的装置。其主体一般为用不锈钢板制成的主式圆筒,其容积在1m3至数百m3。在设计和加工中应注意结构严密,合理。能耐受蒸汽灭菌、有一定操作弹性、内部附件尽量减少(避免死角)、物料与能量传递性能强,并可进行一定调节以便于清洗、减少污染,
发酵罐发酵过程中所产生的二氧化碳气体怎么解决
发酵罐发酵过程中所产生的二氧化碳气体借带有控制阀门的U形支管和总管相连,并引向液沫捕集器经分离除去泡沫后,再通过一个鼓泡式的水洗涤塔,经回收酒精后排入大气或二氧化碳综合利用车间。各发酵罐都是密闭的,各罐底均有和总排污管相联接的排污支管,该管和蒸汽管相通,以便消毒和杀菌。为尽可能减少染菌的几率,发酵罐
微生物发酵罐发酵过程中溶解氧对发酵的影响及其控制
一、溶解氧对发酵的影响 在发酵过程中,影响耗氧的因素有以下几方面:1、培养基的成分和浓度2、菌龄3、发酵条件二、溶解氧浓度的控制 在供氧方面,主要是设法提高氧传递的推动力和液相体积氧传递系数。 1、调节搅拌转速或通气速率来控制供氧; 2、控制补料速度来控制基质的浓度,从而达到最适的菌体浓度
微生物絮凝剂的应用历史
早期微生物的细胞絮凝现象被发现但未受重视,仅作为细胞富集方法。近十几年细胞絮凝技术在连续发酵及产品分离中广泛应用。从最早Butterfield从活性污泥中筛选得到絮凝剂产生菌开始,后续各国研究者从多种微生物中筛选出众多有絮凝能力的微生物。如1976年Nakamura j.等人从霉菌、细菌、放线菌、酵
微生物发酵的基本内容介绍
微生物发酵即是指利用微生物,在适宜的条件下,将原料经过特定的代谢途径转化为人类所需要的产物的过程。微生物发酵生产水平主要取决于菌种本身的遗传特性和培养条件。 发酵工程的应用范围医药工业,食品工业,能源工业,化学工业,农业:改造植物基因;生物固氮;工程杀虫菌生物农药;微生物养料。环境保护等方面。
微生物菌种发酵罐的特点
发酵罐过程一般来说都是常温常压下进行的生物化学反应。要求条件也比较简单。只要加入少量的有机和无机氮源就可进行反应。微生物因不同的类别可以有选择地去利用它所需要的营养。基于这—特性,发酵所用的原料通常以淀粉、糖蜜或其他农副产品为主。可以利用废水和废物等作为发酵的原料进行生物资源的改造和更新。发酵罐
概述微生物发酵的操作方法
微生物发酵过程根据发酵条件要求分为好氧发酵和厌氧发酵。好氧发酵法有液体表面培养发酵、在多孔或颗粒状固体培养基表面上发酵和通氧深层发酵几种方法。厌氧发酵采用不通氧的深层发酵。因此,无论好氧与厌氧发酵都可以通过深层培养来实现,这种培养均在具有一定径高比的圆柱形发酵罐内完成,就其操作方法可分为以下几种
丙酮酸的微生物发酵法
微生物代谢过程中,利用葡萄糖积累丙酮酸的过程称为微生物发酵法。微生物发酵法生产丙酮酸研究已有50年历史,但因丙酮酸高产菌株选育十分困难,虽有一些微生物能够积累丙酮酸,但其产量无法达到工业化要求。该法生产丙酮酸真正取得突破,是在1988年时,日本东丽工业株式会社的研究人员宫田令子和米原辙选育出一系