酪氨酸酶的研究历史
自从发现了人黑色素细胞可以以1-3,4-二羟基丙氨酸(L-多巴)为底物合成黑色素,这个反应成为酪氨酸酶活性和定位检测的基础,在之后的研究中,酪氨酸酶成为第一个用亲和色谱纯化的酶,酪氨酸酶也是最早发现能将酶分子内部氧原子参入到有机物中的酶;并为酶自杀性失活提供了早期实例.现今,人们已经从微生物、植物及多种动物中提取并纯化了酪氨酸酶.目前,对酪氨酸酶的研究主要集中在酶的分离纯化、催化机制、活性调控以及酪氨酸酶基因及其在生物体内的生理作用等方面。......阅读全文
核酸酶的发展历史介绍
20世纪70年代,在细菌中陆续发现了一类核酸内切酶,能专一性地识别并水解双链DNA上的特异核苷酸顺序,称为限制性核酸内切酶(restriction endonuclease,简称限制酶)。当外源DNA侵入细菌后,限制性内切酶可将其水解切成片段,从而限制了外源DNA在细菌细胞内的表达,而细菌本身的
概述核酸酶的发展历史
20世纪70年代,在细菌中陆续发现了一类核酸内切酶,能专一性地识别并水解双链DNA上的特异核苷酸顺序,称为限制性核酸内切酶(restriction endonuclease,简称限制酶)。当外源DNA侵入细菌后,限制性内切酶可将其水解切成片段,从而限制了外源DNA在细菌细胞内的表达,而细菌本身的
转化酶的定义和历史
糖苷酶之一。催化蔗糖水解成为果糖和葡萄糖的一种酶,广泛存在于动植物和微生物中,主要从酵母中得到。自1860 年Bertholet 从啤酒酵母Sacchacomyces Cerevisiae 中发现了蔗糖酶以来, 它已被广泛地进行了研究。蔗糖酶(β -D-呋喃果糖苷果糖水解酶,fructofurano
DNA连接酶的发现历史
环形DNA分子的发现使科学家相信一定有一种能连接这种切口的酶存在。首个DNA连接酶(ligase)——大肠杆菌DNA连接酶,是1967年发现的,是大肠杆菌基因编码。1970年,发现了T4DNA连接酶,由大肠杆菌T4噬菌体基因编码的。
微生物酪氨酸酶的来源及作用
微生物酪氨酸酶酪氨酸酶,又叫单酚氧化酶,它可以氧化L-酪氨酸合成L-多巴和黑色素。在高等动物和人类中酪氨酸酶的活性高低与黑色素的形成速率有关,缺乏此酶活性将引起白化病。有报道说,一种假单胞菌(Pseudomonas sp.)具有高产酪氨酸酶的能力,另一种细菌即弗氏柠檬杆菌(Cibrobacter f
简述酪氨酸羟化酶的临床意义
酪氨酸羟化酶可以被药物α-甲基-对-酪氨酸(甲基酪氨酸)所抑制。此抑制作用可以导致脑部多巴胺与去甲肾上腺素的消耗,这是因为缺乏前体L-多巴(L-3,4-二羟基苯丙氨酸),此物质可以由酪氨酸羟化酶所合成。此药很少被使用并会导致抑郁,但它在治疗嗜铬细胞瘤以及抗高血压方面很有用处。 在自身免疫性多内
简述酪氨酸羟化酶的临床意义
酪氨酸羟化酶可以被药物α-甲基-对-酪氨酸(甲基酪氨酸)所抑制。此抑制作用可以导致脑部多巴胺与去甲肾上腺素的消耗,这是因为缺乏前体L-多巴(L-3,4-二羟基苯丙氨酸),此物质可以由酪氨酸羟化酶所合成。此药很少被使用并会导致抑郁,但它在治疗嗜铬细胞瘤以及抗高血压方面很有用处。 在自身免疫性多内
酶法生产L酪氨酸的方法介绍
酶法也称为微生物转化法,主要是利用微生物细胞内酪氨酸酚裂解酶(tyrosine phenol-lyase,TPL,EC 4.1.99.2)将苯酚、丙酮酸和氨或者苯酚、L-丝氨酸转化为L-酪氨酸。研究较多的、具有较高酶活的TPL主要来自于微生物草生欧文氏菌(Erwinia herbicola)、中
数字PCR的研究历史
1983年由美国Mullis首先提出设想,1985年发明了聚合酶链反应,即简易DNA扩增法,标志着PCR技术的真正诞生。1999 年,美国学者 Kenneth Kinzler 与 Bert Vogelstein 首次提出了数字 PCR (digital PCR,dPCR)的概念,实现了核酸拷贝数绝对
电泳现象的研究历史
电泳(Electrophoresis)是指带电荷的粒子或分子在电场中移动的现象称为电泳。大分子的蛋白质,多肽,病毒粒子,甚至细胞或小分子的氨基酸,核苷等在电场中都可作定向泳动。1937年Tiselius成功地研制了界面电泳仪进行血清蛋白电泳,它是在一U型管的自由溶液中进行的,电泳后用光学系统使各种蛋
转运RNA的研究历史
在tRNA被发现以前,佛朗西斯·克里克就假设有种可以将RNA讯息转换成蛋白质讯息的适配分子存在。1960年代早期,亚历山大·里奇、唐纳德·卡斯帕尔等生物学家开始研究tRNA的结构,1965年,罗伯特·W·霍利首次分离了tRNA,并阐明了其序列与大致的结构,他因此贡献而获得1968年的诺贝尔生理学或医
信息素的研究历史
1999年,玛莎·迈克林塔克(Martha McClintock)发表于《Nature》的研究显示,女性会因为信息素化学讯号的影响而产生月经同步的现象后,科学界开始重视人类信息素的研究。后人便把月经的同步现象称为麦克林塔克现象(McClintock effect),之后的研究,部分人类行为学者认为人
细胞凋亡的研究历史
1. 凋亡概念的形成 1965年澳大利亚科学家发现,结扎鼠门静脉后,电镜观察到肝实质组织中有一些散在的死亡细胞,这些细胞的溶酶体并未被破坏,显然不同于细胞坏死。这些细胞体积收缩、染色质凝集,从其周围的组织中脱落并被吞噬,机体无炎症反应。1972年Kerr等三位科学家首次提出了细胞凋亡的概念,宣告了对
胆固醇的研究历史
早在18世纪人们已从胆石中发现了胆固醇,1816年化学家本歇尔将这种具脂类性质的物质命名为胆固醇。胆固醇广泛存在于动物体内,尤以脑及神经组织中最为丰富,在肾、脾、皮肤、肝和胆汁中含量也高。其溶解性与脂肪类似,不溶于水,易溶于乙醚、氯仿等溶剂。胆固醇是动物组织细胞所不可缺少的重要物质,它不仅参与形成细
多肽合成的研究历史
多肽合成研究已经走过了一百多年的光辉历程,1902年,Emil Fischer首先开始关注多肽合成,由于当时在多肽合成方面的知识太少,进展也相当缓慢,直到1932年,Max Bergmann等人开始使用苄氧羰基(Z)来保护α-氨基,多肽合成才开始有了一定的发展。到了20世纪50年代,有机化学家们合成
植物激素的研究历史
C.Darwin在1880年研究植物向性运动时,只有各种激素的协调配合,发现植物幼嫩的尖端受单侧光照射后产生的一种影响,能传到茎的伸长区引起弯曲。1928年荷兰F.W.温特从燕麦胚芽鞘尖端分离出一种具生理活性的物质,称为生长素,它正是引起胚芽鞘伸长的物质。1934年荷兰F.克格尔等从人尿得到生长素的
信息素的研究历史
1999年,玛莎·迈克林塔克(Martha McClintock)发表于《Nature》的研究显示,女性会因为信息素化学讯号的影响而产生月经同步的现象后,科学界开始重视人类信息素的研究。后人便把月经的同步现象称为麦克林塔克现象(McClintock effect),之后的研究,部分人类行为学者认为人
超声聚合的研究历史
聚合物的声化反应最早起源于上世纪30年代,反应中发现超声作用可使淀粉和明胶的黏度发生变化。50年代对该现象的广泛研究表明,是空化作用导致分子链段断裂的结果。空化作用,即当超声波经过液体介质时,导致的极短时间内大量微气泡形成、生长、崩溃的过程。声化学理论计算和对应实验表明,空化作用可使空化泡相界面
卵磷脂的研究历史
1812年,磷脂最早是由Uauquelin从人脑中发现。1844年,科学家Golbley从蛋黄中分离出来,并于1850年按照希腊文lekithos(蛋黄)命名为Lecithin(卵磷脂)。1861年,科学家Topler又从植物种子发现了磷脂的存在。1925年,科学家Leven将卵磷脂(磷脂酰胆碱)从
转运RNA的研究历史
在tRNA被发现以前,佛朗西斯·克里克就假设有种可以将RNA讯息转换成蛋白质讯息的适配分子存在。1960年代早期,亚历山大·里奇、唐纳德·卡斯帕尔等生物学家开始研究tRNA的结构,1965年,罗伯特·W·霍利首次分离了tRNA,并阐明了其序列与大致的结构,他因此贡献而获得1968年的诺贝尔生理学或医
环境激素的研究历史
近些年来,当产业化浪潮给人类带来物质文明时,人们发现了一些存在于生物机体之外的激素,被广泛应用于农业生产和人们的日常生活中,在获取暂时利益的同时,也蒙受了巨大危害。为了使牛、羊多长肉,多产奶,人们给这些牲畜体内注射了大量雌激素;为了让池塘里的鱼虾迅速生长,养殖户添加了“催生”的激素饲……。这种具有与
细胞凋亡的研究历史
1. 凋亡概念的形成 1965年澳大利亚科学家发现,结扎鼠门静脉后,电镜观察到肝实质组织中有一些散在的死亡细胞,这些细胞的溶酶体并未被破坏,显然不同于细胞坏死。这些细胞体积收缩、染色质凝集,从其周围的组织中脱落并被吞噬,机体无炎症反应。1972年Kerr等三位科学家首次提出了细胞凋亡的概念,宣告了对
转运RNA的研究历史
在tRNA被发现以前,佛朗西斯·克里克就假设有种可以将RNA讯息转换成蛋白质讯息的适配分子存在。1960年代早期,亚历山大·里奇、唐纳德·卡斯帕尔等生物学家开始研究tRNA的结构,1965年,罗伯特·W·霍利首次分离了tRNA,并阐明了其序列与大致的结构,他因此贡献而获得1968年的诺贝尔生理学或医
叶绿素荧光的研究历史
叶绿素荧光现象是由传教士Brewster首次发现的。1834年Brewster发现当一束强太阳光穿过月桂叶子的乙醇提取液时,溶液的颜色变成了绿色的互补色——红色,而且颜色随溶液的厚度而变化,这是历史上对叶绿素荧光及其重吸收现象的首次记载。后来,Stokes(1852)认识到这是一种光发射现象,并
叶绿素荧光的研究历史
叶绿素荧光现象是由传教士Brewster首次发现的。1834年Brewster发现当一束强太阳光穿过月桂叶子的乙醇提取液时,溶液的颜色变成了绿色的互补色——红色,而且颜色随溶液的厚度而变化,这是历史上对叶绿素荧光及其重吸收现象的首次记载。后来,Stokes(1852)认识到这是一种光发射现象,并
磷酸酶制备实验——膜蛋白酪氨酸磷酸酶(PTP)
试剂、试剂盒提取缓冲液仪器、耗材微型离心机Superose 6 柱子实验步骤1. 用 1 ml 含有 1% NP-40 去污剂的提取缓冲液提取颗粒部分(按照上面组织/细胞的制备和提取所述方法准备)15 分钟,用一个小匀浆器固定在微型离心管里匀浆或者通过微量移液器吸头尖反复吸入和排出悬浮液以确保沉淀分
蛋白酪氨酸磷酸酶抑制剂的概述
PTP-1B催化功能域中半胱氨酸的巯基对酶的活性至关重要,它需保持还原状态,任何使其氧化的化合物都会导致酶失去活性。Xie等[7]认为PTP-1B抑制剂可通过削弱PTP-1B对胰岛素受体的去磷酸化作用,提高胰岛素受体及其底物-1的磷酸化水平,起到类胰岛素和胰岛素增敏的作用。 钒酸盐和过氧钒类化
关于酪氨酸羟化酶缺乏症的简介
酪氨酸羟化酶缺乏症(tyrosine hydroxylase deficiency,TH deficiency)也被称为隐性多巴反应性肌张力障碍(Recessive Dopa-Responsive Dystonia)是一种罕见的代谢异常疾病,是由于将酪氨酸转变为左旋多巴的酪氨酸羟化酶(TH)缺乏
关于蛋白酪氨酸磷酸酶的基本结构介绍
PTP-1B广泛存在于脂肪细胞、肝组织细胞、肌组织细胞和上皮细胞多个组织中。荧光免疫原位杂交法表明,PTP-1B主要定位于胞浆内质网组织中,以C末端的35个特异性氨基酸与内质网结合,其N末端含有半胱氨酸和精氨酸残基,精氨酸残基的催化中心朝向胞浆。 PTP-1B含有一段240个氨基酸残基所组成的
概述酪氨酸羟化酶缺乏症的症状
此症具广泛的表现型上的差异,从症状最轻微的酪氨酸羟化酶缺乏多巴反应性肌张力障碍、较为严重的左旋多巴不反应性婴幼儿帕金森氏症,及更为严重的进行性婴幼儿脑部病变都可能发生。 症状较轻微者,一开始可能表现单边或不对称的四肢肌张力不全、姿势性颤抖或步伐不协调等症状,但随著病程的进展,可能发生典型多巴反