分布式阵列射流冲击结合微结构表面强化沸腾传热技术

随着电子芯片朝着高性能化和微小型化的方向快速发展,其热流密度不断增加,部分高性能芯片的热流密度已超过500W/cm2,传统的风冷、液冷以及被动式冷却技术已不能满足要求,热失效成为电子设备失效的主要形式。发展先进高效散热技术是解决芯片热失效的有效对策。射流冲击结合微结构表面强化沸腾传热技术作为一种新型主动散热技术,具有结构紧凑、传热系数高、有效消除局部热点等优点,可作为解决上述问题的有效措施。 分布式阵列射流结构由于射流入口与流体排出口间隔排布(图1),不存在传统射流冲击的出口横流干扰,具有系统压降小,汽液流体易排出等优点。中国科学院工程热物理研究所传热传质研究中心科研人员以分布式射流冲击强化沸腾传热技术为研究对象,建立相关试验测试平台,研究了微肋柱阵列表面、多孔丝网结构表面以及Cu-Al2O3多孔沉积表面强化射流冲击沸腾传热特性,获得了不同微结构表面对应的传热系数变化规律(如图2所示,为HFE-7100电子氟化液工质测试结......阅读全文

分布式阵列射流冲击结合微结构表面强化沸腾传热技术

  随着电子芯片朝着高性能化和微小型化的方向快速发展,其热流密度不断增加,部分高性能芯片的热流密度已超过500W/cm2,传统的风冷、液冷以及被动式冷却技术已不能满足要求,热失效成为电子设备失效的主要形式。发展先进高效散热技术是解决芯片热失效的有效对策。射流冲击结合微结构表面强化沸腾传热技术作为一种

力学所等微重力沸腾传热强化研究获进展

  沸腾传热因其高传热能力在地面和空间科技实践中有着巨大的应用价值。沸腾现象中具有极为复杂的多尺度耦合、多相相互作用和非平衡等特性,存在众多的影响因素,如成核、气泡生长、加热面附近固﹣液﹣气相互作用、气﹣液界面上的蒸发/凝结及使蒸气和热流体远离加热面的输运等。由于气、液两相介质一般存在极大的密度差异

射流萃取器

  ①萃取效率高≥95%   ②萃取速度快,几分钟可以萃取一个样品   ③重现性高(回收率95-100%)   ④无劳动强度   ⑤操作简单   ⑥工作噪音低,省时、省力   ⑦清洗方便   萃取效率:≥95%   萃取效率波动:不超过±5%   最佳取样量:CQQ-500型为2

沸腾制粒机应用范围

  本机主要用于:医药、食品、化工等行业的粉末物料混合、干燥、制粒、颗粒顶喷包衣、涂裹附层等作业。如下操作: 药品造粒及包衣: 1)造粒:压片颗粒、冲剂颗粒、胶囊用颗粒。 2)包衣:颗粒、丸剂保护层、备色缓释、薄膜、肠溶包衣。 食品造粒及包衣:砂糖、咖啡、可可粉末、奶油、粉末果汁、 氨基酸、 调味料

cod消解仪沸腾几分钟后就停止沸腾了

防止爆沸应加入碎瓷片而不是玻璃珠.你是学化学的吧,可能不太明白液体沸腾.液体在达到汽化点之后要有杂质或已有的小气泡才能沸腾,要是杂质和已有的小气泡不足或没有了,就会使液体处于地种过沸腾状态,这保状态就是:液体温度已在汽化点以上,但液体不显示沸腾.随着温度的继续升高,就会出现爆沸.这里你做错了几点,首

南极冰下岩浆沸腾

  Marie Byrd板块位于南极洲的一个荒凉区域,深埋在南极西部的冰盖之下。虽然地球表面可能会被冻结,但地表下却是一个迥然不同的世界。历史上的火山喷发已经戳破了冰原,并在冰原上形成一个火山链。目前的研究已经表明:熔岩仍然在激发地下深处的地层活动。   虽然只有最大的火山喷发可以融化覆盖在其

沸腾炉的相关介绍

  流化床炉——燃料在炉膛中完全被空气流所“流化”形成一种类似于液体沸腾状态燃烧的炉子,又名沸腾炉。是能脱硫、脱氮和燃用几乎所有固体燃料的一种高效、清洁燃烧设备。  优点:  1、燃烧效率高、传热效果好,结构简单、钢耗量低;  2、燃料适应性广,能燃用包括煤矸石、石煤、油页岩等劣质煤在内的所有固体燃

液氮罐的传热量

众所周知,目前人们所了解到的热的传递有对流、传导、辐射三种方式,从技术上讲,只要能有效地杜绝外界的热量通过以上三种方式传人罐子内,液氮罐就能长时间的贮存一196。C的液氮,对于对流传热而言,液氮罐的壳体设计成两层,并把两层之间的空气抽掉,剩下的残余气体在两层之间的压强低于1.3xlO。3Pa时,其对

沸腾炉的工作原理简介

  固体燃料在炉内被向上流动的气流托起,在一定的高度范围内作上下翻滚运动,并以流态化(或称沸腾)状态进行燃烧的炉膛,又称流化床燃烧炉。沸腾燃烧方式也用于其他的炉窑中。沸腾燃烧方式的特点既不像在层燃炉中那样将固体燃料静止地放在炉排上燃烧;也不像在室燃炉中那样将液体、气体或磨成细粉状的固体燃料悬浮在炉膛

简介阻火器的传热作用

  关于阻火器的工作原理,主要有两种观点:一是基于传热作用;一是基于器壁效应。  传热作用  燃烧所需要的必要条件之一就是要达到一定的温度,即着火点。低于着火点,燃烧就会停止。依照这一原理,只要将燃烧物质的温度降到其着火点以下,就可以阻止火焰的蔓延。当火焰通过阻火元件的许多细小通道之后将变成若干细小

管道阻火器的传热作用

  大多数阻火器是由能够通过气体的许多细小、均匀或不均匀的通道或孔隙的固体材质所组成,对这些通道或孔隙要求尽量的小,小到只要能够通过火焰就可以。这样,火焰进入阻火器后就分成许多细小的火焰流被熄灭。火焰能够被熄灭的机理是传热作用和器壁效应。  传热作用  管道阻火器能够阻止火焰继续传播并迫使火焰熄灭的

微射流均质机的功能简介

  主要功能  1、纳米纤维素的制备 植物纤维经干燥、粉碎、漂白、研磨之后,细胞壁解离可以得到纳米级的纤维素。在这项研究中需要用到很多设备,高压微射流均质机在此过程中用于细胞壁解离这一环节。  2、无机纳米材料的分散 酚醛树脂改性用二氧化硅、二氧化钛,生物质材料抗光变色、抗氧化改性中均需要纳米级的无

如何选择高压微射流均质机

  ① 均质压力:均质过程中,在确保增压泵状况良好、均质腔未堵塞的情况下,处理物料所达到的实际压力是否能够接近设定压力,压力是否稳定。  ② 处理流量:设备的处理流量与接入电压、均质压力、物料粘度或浓度等因素有关,应观察demo过程中的实际处理流量是否稳定,是否与其宣传资料相匹配。  ③ 温度控制:

三重设计大幅提高水沸腾效率

  水沸腾的过程会消耗能量。据近日发表于《先进材料》杂志的一项研究,美国麻省理工学院研究人员开发了一种新颖的表面处理方式,能够使水更容易达到沸点,因此需要更少的能量。该处理改善了决定沸腾过程的两个关键参数:传热系数(HTC)和临界热通量(CHF)。  在材料设计中,HTC和CHF通常会存在权衡——其

沸腾炉的内部构造的介绍

  常用沸腾炉燃烧室的典型结构包括布风系统、沸腾床、进料和排渣系统3个部分。  ①布风系统。燃烧室底部为布风板,板上直接开孔或装许多带通风小孔的风帽。布风板的作用是承载料层并使空气上升速度沿炉内截面分布均匀。  ②沸腾床。布风板上放置一定量的床料(包括固体燃料和大量的灰渣或石灰石颗粒)。运行时,当料

什么是微结构

相对于宏观结构而言的。微结构是肉眼看不见的,需要借助显微镜甚至电镜以及更细微的结构。比如一个植物,细胞是它的微结构,细胞的构成也是

传热过程的主要方式介绍

①热传导:热量从系统的一部分传到另一部分或由一个系统传到另一系统的现象叫做热传导。热传导是固体中热传递的主要方式。在气体或液体中,热传导过程往往和对流同时发生。各种物质的热传导性能不同,一般金属都是热的良导体,玻璃、木材、棉毛制品、羽毛、毛皮以及液体和气体都是热的不良导体,石棉的热传导性能极差,常作

射流萃取器的技术参数

  ①萃取效率高≥95%  ②萃取速度快,几分钟可以萃取一个样品  ③重现性高(回收率95-100%)  ④无劳动强度  ⑤操作简单  ⑥工作噪音低,省时、省力  ⑦清洗方便  萃取效率:≥95%  萃取效率波动:不超过±5%  最佳取样量:CQQ-500型为200 mL  使用电源:交流220V

微射流均质机的技术指标

  微射流均质机是一种用于材料科学领域的分析仪器,于2014年2月24日启用。  技术指标  主副腔串联,大孔径副腔在前,起预分散作用,小孔径主腔在后,起主分散作用。 操作压力最大为30000PSI 正常流量为320ml/min 最小样品量为120ml。 

怎么选择合适的微射流均质机?

  微射流均质机逐步成为了研究生产纳米制剂(如脂质体、载药脂肪乳)及各类前沿应用(如石墨烯、碳材料、铂碳催化剂)的企业、高校、科研院所,但面对繁多品牌的微射流均质机,该如何进行选择?  显然,除了为市场宣传而修饰过的、大同小异的“参数”比较,在选择一款可靠且合适的高压微射流均质机时,通常需要在实际做

全球变暖时代结束,全球沸腾时代来临

原文地址:http://news.sciencenet.cn/htmlnews/2023/7/505641.shtm

全球变暖时代结束,全球沸腾时代来临

  7月27日,世界气象组织和欧盟哥白尼气候变化服务局发布官方数据,7月的前3周是有记录以来最热的3周,尽管7月还未结束,但几乎可以肯定今年7月将成为有记录以来最热的月份。全球变暖时代结束,全球沸腾时代来临,减少温室排放迫在眉睫。  在7月27日世界气象组织发布的消息中,欧盟哥白尼气候变化服务局欧洲

LSCM细胞亚微结构

细胞亚微结构(细胞器探针)一般的光学显微镜由于分辨率有限,在观察细胞器结构时受到一定的限制,而共聚焦激光扫描显微镜可获得较一般普通光学显微镜分辨率高的细胞内线粒体、高尔基复合体、内质网、溶酶体等细胞器图像,同时还可动态观察活细胞状态下细胞器的形态学变化情况,此外还可通过光学切片即断层扫描技术进行三维

显微结构分析

1、X射线衍射仪技术(XRD)X射线衍射仪技术(X-ray diffraction,XRD)。通过对材料进行X射线衍射,分析其衍射图谱,获得材料的成分、材料内部原子或分子的结构或形态等信息的研究手段。X射线衍射分析法是研究物质的物相和晶体结构的主要方法。当某物质(晶体或非晶体)进行衍射分析时,该

超微结构的概念

超微结构,又称亚显微结构。指在普通光学显微镜下观察不能分辨清楚,但在电子显微镜下能观测到的细胞内各种微细结构(普通光学显微镜的分辨力极限约为0.2微米,细胞膜、内质网膜和核膜的厚度,核糖体、微体、微管和微丝的直径等均小于0.2微米) ,如各种细胞器。

细胞的超微结构

  细胞核(nucleus)是遗传信息的载体,细胞的调节中心,其形态随细胞所处的周期阶段而异,通常以间期核为准。  细胞核外被核膜。核膜由内外二层各厚约3nm的单位膜构成,中间为2~5nm宽的间隙(核周隙);核膜上有直径约50nm的微孔,作为核浆与胞浆间交通的孔道,其数目因细胞类型和功能而异,多者可

直接接触传热的蒸发器

  实际生产中,有时还应用直接接触传热的蒸发器。它是将燃料(通常为煤气和油)与空气混合后,在浸于溶液中的燃烧室内燃烧,产生的高温火焰和烟气经燃烧室下部的喷嘴直接喷入被蒸发的溶液中。高温气体和溶液直接接触,同时进行传热使水分蒸发汽化,产生的水汽和废烟气一起由蒸发器顶部排出。其燃烧室在溶液中的浸没深度一

中国科学院团队解决大功率电子芯片的热管理难题

原文地址:http://news.sciencenet.cn/htmlnews/2023/8/507320.shtm 随着电子信息技术的快速发展,电子芯片的功率密度不断提高,单位体积发热量不断增大,尽管相应的热管理技术也在不断发展,但仍然存在较大的技术挑战,目前常规冷却剂和冷却方法已不能满足其冷

中国科学院团队解决大功率电子芯片的热管理难题

  随着电子信息技术的快速发展,电子芯片的功率密度不断提高,单位体积发热量不断增大,尽管相应的热管理技术也在不断发展,但仍然存在较大的技术挑战,目前常规冷却剂和冷却方法已不能满足其冷却要求,急需发展新的高效冷却技术。针对这一问题,研究所传热传质研究中心项目团队提出将潜热型功能热流体-相变微胶囊悬浮液

新型低温等离子体器件突破瓶颈,增加4倍能效

  近日,西安光机所瞬态光学与光子技术国家重点实验室汤洁研究员课题组在低温等离子体器件研发方面取得突破性研究进展,该研究成果以“A highly cost-efficient large-scale uniform laminar plasma jet array enhanced by V–I c