Nature:解析人源PBAF染色质重塑复合物结合核小体的结构
清华大学生命科学学院/结构生物学高精尖创新中心/清华-北大生命科学联合中心陈柱成教授研究团队在《自然》杂志在线发表题为“人源PBAF染色质重塑复合物结合核小体的结构”(Structure of human PBAF chromatin remodeling complex bound to a nucleosome)的研究论文。该论文报道了人源染色质重塑复合物PBAF在活性状态下结合核小体的结构,揭示了由12个亚基组成的PBAF复合物的组装方式和识别核小体的机制,为众多与人类疾病相关突变的致病机理提供了理论框架。 在真核生物中,DNA缠绕在组蛋白上形成核小体,经高度压缩形成染色质。这一形式一方面保证了基因组的稳定性,另一方面阻碍了诸如遗传信息的复制,转录和DNA损伤修复等生命活动。因此,染色质的动态调控对于生物具有重要作用。染色质重塑Snf2-家族马达蛋白利用ATP的能量滑动、弹出、交换或解聚核小体来,从而实现对染色质的动......阅读全文
Nature:解析人源PBAF染色质重塑复合物结合核小体的结构
清华大学生命科学学院/结构生物学高精尖创新中心/清华-北大生命科学联合中心陈柱成教授研究团队在《自然》杂志在线发表题为“人源PBAF染色质重塑复合物结合核小体的结构”(Structure of human PBAF chromatin remodeling complex bound to a
ARID2-基因突变与药物因子介绍
该基因编码一个富含AT的相互作用域(ARID)的DNA结合蛋白家族成员。 ARID家族的成员在胚胎模式,细胞谱系基因调控,细胞周期控制,转录调控和染色质结构修饰中发挥作用。 该蛋白作为多溴和BRG1相关因子或PBAF(SWI / SNF-B)染色质重塑复合物的亚基,通过核受体促进配体依赖性转录激活。
与DNA白修饰相关因子介绍ARID2
该基因编码一个富含AT的相互作用域(ARID)的DNA结合蛋白家族成员。 ARID家族的成员在胚胎模式,细胞谱系基因调控,细胞周期控制,转录调控和染色质结构修饰中发挥作用。 该蛋白作为多溴和BRG1相关因子或PBAF(SWI / SNF-B)染色质重塑复合物的亚基,通过核受体促进配体依赖性转录激活。
ARID2基因编码功能及结构描述
该基因编码一个富含AT的相互作用域(ARID)的DNA结合蛋白家族成员。 ARID家族的成员在胚胎模式,细胞谱系基因调控,细胞周期控制,转录调控和染色质结构修饰中发挥作用。 该蛋白作为多溴和BRG1相关因子或PBAF(SWI / SNF-B)染色质重塑复合物的亚基,通过核受体促进配体依赖性转录激活。
DNA修饰ARID2基因信号通路介绍
该基因编码一个富含AT的相互作用域(ARID)的DNA结合蛋白家族成员。 ARID家族的成员在胚胎模式,细胞谱系基因调控,细胞周期控制,转录调控和染色质结构修饰中发挥作用。 该蛋白作为多溴和BRG1相关因子或PBAF(SWI / SNF-B)染色质重塑复合物的亚基,通过核受体促进配体依赖性转录激活。
ARID2基因的结构特点和作用
该基因编码一个富含AT的相互作用域(ARID)的DNA结合蛋白家族成员。 ARID家族的成员在胚胎模式,细胞谱系基因调控,细胞周期控制,转录调控和染色质结构修饰中发挥作用。 该蛋白作为多溴和BRG1相关因子或PBAF(SWI / SNF-B)染色质重塑复合物的亚基,通过核受体促进配体依赖性转录激活。
癌症相关的基因突变类型及临床解释ARID2
该基因编码一个富含AT的相互作用域(ARID)的DNA结合蛋白家族成员。 ARID家族的成员在胚胎模式,细胞谱系基因调控,细胞周期控制,转录调控和染色质结构修饰中发挥作用。 该蛋白作为多溴和BRG1相关因子或PBAF(SWI / SNF-B)染色质重塑复合物的亚基,通过核受体促进配体依赖性转录激活。
时隔两年-清华大学青年学者再发Nature解析染色质重塑
在真核生物细胞内,DNA缠绕着组蛋白八聚体形成染色质的基本组成单位,核小体。染色质在包装、保护遗传物质方面发挥着关键作用。 染色质形成同时对细胞内的一些生理过程,如DNA复制、转录、修复等产生了巨大的障碍。为此SWI/SNF家族染色质重塑复合物通过利用ATP水解的能量调控染色质的结构,广泛参与
清华大学生科院在Nature上发表论文阐述染色质重塑机理
2017年4月19日,清华大学生命科学学院陈柱成课题组和李雪明课题组合作在《自然》(Nature)杂志上以长文(Research Article)形式在线发表题为《Snf2-核小体复合物结构揭示的染色质重塑机理》(Mechanism of chromatin remodelling reveal
Science:揭示出黑色素瘤抵抗免疫治疗之谜
癌症科学家面临的一个紧迫的问题就是为什么免疫疗法在一些患者中取得了显著的效果,但对大多数患者是没有效果的。如今,来自美国达纳-法伯癌症研究所的两个研究小组独立地发现了癌细胞中的一种影响着它们是否对被称作免疫检查点抑制剂的免疫治疗药物产生抵抗力或作出反应的遗传机制。这些发现揭示出潜在的新型药物靶标
研究发现调控造血发育与白血病发生新机制
2月26日,中国科学院上海巴斯德研究所张岩研究组、中科院生物化学与细胞生物学研究所周斌研究组、苏州大学熊思东研究组的合作研究成果,以The chromatin remodeling subunit Baf200 promotes normal hematopoiesis and inh
利用小鼠模型揭示滑膜肉瘤新形成机制
滑膜肉瘤(Synovial Sarcoma)一种多发于青少年时期恶性软组织肿瘤,是由于t(X;18) (p11;q11) 染色体易位引起的,表现为第18号染色体SS18基因与X染色体滑膜肉瘤断点基因SSX融合形成新的SS18-SSX基因。 SWI/SNF复合物介导ATP依赖的染色质重塑过程是调
我国学者发现调控造血发育与白血病发生新机制
近日,国际学术期刊Journal of Hematology & Oncology发表了中国科学院上海巴斯德研究所张岩研究组与中国科学院生物化学与细胞生物学研究所周斌研究组、苏州大学熊思东研究组的合作研究成果“The chromatin remodeling subunit Baf200 pro
我国学者发现调控造血系统发育与白血病发生新机制
近日,国际学术期刊Journal of Hematology & Oncology发表了中国科学院上海巴斯德研究所张岩研究组与中国科学院生物化学与细胞生物学研究所周斌研究组、苏州大学熊思东研究组的合作研究成果“The chromatin remodeling subunit Baf200 pro
异染色质和常染色质的结构差异
染色质可以分为两种类群,异染色质和常染色质。最开始,这两种形式是通过其在染色之后的颜色深浅区分的,常染色质一般着色较浅,而异染色质着色很深,表明其紧密聚集。异染色质通常集中在细胞核的边缘区域。然而,不同于这种早期的二分法,最近的研究表明在动物和植物体内都拥有不止这两种染色体结构,可能会有四到五种,区
常染色质与异染色质的功能差异
常染色质区域的基因可以被转录为信使RNA。常染色质区域非折叠的结构允许基因调控蛋白和RNA聚合酶与其上的DNA序列结合,从而开启转录过程。在转录过程中,并非所有的常染色质都会被转录,但基本上非转录的部分会折叠为异染色质以保护暂时其上不用的基因。因此细胞的活性与细胞核中的常染色质数目有直接关系。常染色
异染色质的主要类型组成性异染色质
组成性异染色质,指除S期以外在整个细胞周期均处于聚缩状态, DNA包装比基本不变,可构成多个染色中心。
异染色质的主要类型兼性异染色质
在一定时期的特种细胞的细胞核内, 原来的常染色质可转变成兼性异染色质。如雄性个体的细胞含有一个瘦小的Y染色体和一个大的X染色体, 由于X和Y染色体上很少有共同的基因, 对于雄性来说, X染色体上的基因就只有一个拷贝。虽然雌性细胞有两条X染色体, 也只有一条具有转录活性, 另外一条X染色体像异染色质一
染色质的分类
间期染色质按其形态特征、活性状态和染色性能区分为两种类型:常染色质和异染色质。按功能状态的不同可将染色质分为活性染色质和非活性染色质。
性染色质检测
实验方法原理 在间期细胞核中,女性X染色质和男性Y染色质均可用特殊染色法显示出来。女性的两个X染色体中的一个,在间期时的染色质呈异固缩(Heteropyconosis),呈深染的小体称Barr氏体。Barr氏体位于间期细胞核内面,呈三角形或半月形小体,易为碳酸复红或硫堇等染料着色。正常女性Barr氏
染色质的定义
染色体在细胞周期的间期时DNA的螺旋结构松散,呈网状或斑块状不定形物,即染色质。以浓集状态存在者,称异染色质(1~eterochromatin);以分散状态存在者,称常染色质(euchromatin)。常染色质染色较浅且均匀,异染色质染色深。性染色质与性染色体(x染色体和Y染色体)有关,称x染色
异染色质的功能
关于异染色质的功能,还未深入了解。但以下的几点是明显的。 1结构型异染色质可以加强着丝点区,使着丝粒稳定,以确保染色体分离。 2可以隔离和保护重要基因(例如NOR区的18S和28S基因),防止或减少基因突变和交换。 3促进物种分化,同源染色体可通过其异染色质区的重复序列在减数分裂时配对,这
染色质重组的意义
染色质重组过程中,核小体滑动可能是一种重要机制,它不改变核小体结构,但改变核小体与DNA 的结合位置。实验证明,这种滑动能被核小体上游的“十字形”结构阻断。但“滑动”机制并不能解释所有实验现象。人们推测,在重组过程中,还有其他机制如核小体可能与DNA 分离,然后核小体经过重排,结构变化后,与DNA
异染色质的定义
异染色质分为结构异染色质和功能异染色质两种类型。结构异染色质是指各类细胞在整个细胞周期内处于凝集状态的染色质,多定位于着丝粒区、端粒区,含有大量高度重复顺序的脱氧核糖核酸(DNA),称为卫星DNA(satellite DNA)。功能异染色质只在一定细胞类型或在生物一定发育阶段凝集,如雌性哺乳动物含一
异染色质的功能
关于异染色质的功能,还未深入了解。但以下的几点是明显的。 1结构型异染色质可以加强着丝点区,使着丝粒稳定,以确保染色体分离。 2可以隔离和保护重要基因(例如NOR区的18S和28S基因),防止或减少基因突变和交换。 3促进物种分化,同源染色体可通过其异染色质区的重复序列在减数分裂时配对,这
异染色质的区分
常染色质易被碱性染料染成浅色,或对福尔根反应呈弱阳性。异染色质易被碱性染料染成深色,或对福尔根反应呈阳性。 [1] 异染色质着色较深,常位于细胞核的边缘和核仁周围,构成核仁相随染色质的一部分。可以分为结构性异染色质(constitutive heterochromatin)和兼性异染色质(f
异染色质的定义
异染色质(heterochromatin)是指在细胞周期中具有固缩特性的染色体。
常染色质的功能
常染色质区域的基因可以被转录为信使RNA。常染色质区域非折叠的结构允许基因调控蛋白和RNA聚合酶与其上的DNA序列结合,从而开启转录过程。在转录过程中,并非所有的常染色质都会被转录,但基本上非转录的部分会折叠为异染色质以保护暂时其上不用的基因。因此细胞的活性与细胞核中的常染色质数目有直接关系。常染色
什么是Y-染色质?
Y染色质又称Y小体或荧光小体。Y染色体用荧光染料染色后,呈亮暗不一的荧光带,在Y染色体长臂的远侧段呈明亮的荧光区。在问期时Y染色体长臂远侧段的强荧光特性仍然存在,经荧光染色后,呈强荧光亮点,直径为0.25—0.3um,位于细胞核内的任何部位。
异染色质的定义
异染色质分为结构异染色质和功能异染色质两种类型。结构异染色质是指各类细胞在整个细胞周期内处于凝集状态的染色质,多定位于着丝粒区、端粒区,含有大量高度重复顺序的脱氧核糖核酸(DNA),称为卫星DNA(satellite DNA)。功能异染色质只在一定细胞类型或在生物一定发育阶段凝集,如雌性哺乳动物