果胶的离子交换法制备方法的优缺点介绍
优点:该法果胶产率比用无机酸提取法高,且产品质量高,生产周期短,工艺简单,成本低,是一种经济上可行的制造方法。 缺点:离子交换法沉淀果胶所用的乙醇,使用量非常大,造成后阶段的乙醇回收工序耗能大,致使生产成本高。这种方法需要较高的温度和长时间加热,这样原料中含有的果胶不可避免地会产生变性和分解破坏,且提取的果胶数量和质量也不理想。......阅读全文
果胶的离子交换法制备方法的优缺点介绍
优点:该法果胶产率比用无机酸提取法高,且产品质量高,生产周期短,工艺简单,成本低,是一种经济上可行的制造方法。 缺点:离子交换法沉淀果胶所用的乙醇,使用量非常大,造成后阶段的乙醇回收工序耗能大,致使生产成本高。这种方法需要较高的温度和长时间加热,这样原料中含有的果胶不可避免地会产生变性和分解破
果胶的离子交换法制备方法介绍
果胶类物质与细胞壁半纤维素等有共价键结合,并与其它细胞壁多聚体通过次级键结合。多价阳离子,尤其是钙离子存在时,因阳离子键合的结果,引起低酯果胶类物质的不溶性和降低高酯果胶的浸胀性。另外,纤维状果胶类物质大分子间以及其它多聚体之间,存在着复杂的机械性牵绊,也影响果胶类物质的溶解性。所以,单用酸法不
果胶的酶解法制备方法的优缺点介绍
优点:酶法提取果胶的相对分子质量(5.6×104)和提取率(91.02%)都较酸法(相对分子质量4.3×104、提取率42.0%)高得多,这为甜菜果胶产业化和进一步改性提高果胶品质提供了必要条件。 缺点:通过实验发现,酶法提取果胶36h以后,反应体系容易染霉菌,在生产实践中应注意防止染菌。酶法
果胶的制备离子交换法
果胶类物质与细胞壁半纤维素等有共价键结合,并与其它细胞壁多聚体通过次级键结合。多价阳离子,尤其是钙离子存在时,因阳离子键合的结果,引起低酯果胶类物质的不溶性和降低高酯果胶的浸胀性。另外,纤维状果胶类物质大分子间以及其它多聚体之间,存在着复杂的机械性牵绊,也影响果胶类物质的溶解性。所以,单用酸法不能完
离子交换法提取果胶的方法介绍
果胶类物质与细胞壁半纤维素等有共价键结合,并与其它细胞壁多聚体通过次级键结合。多价阳离子,尤其是钙离子存在时,因阳离子键合的结果,引起低酯果胶类物质的不溶性和降低高酯果胶的浸胀性。另外,纤维状果胶类物质大分子间以及其它多聚体之间,存在着复杂的机械性牵绊,也影响果胶类物质的溶解性。所以,单用酸法不能完
关于果胶的制备方法膜分离技术的介绍
膜技术(Membrane Technology)是用天然或人工合成的高分子薄膜,以外界能量或化学位差为推动力,对双组分或多组分的溶质和溶剂进行分离、分级、提纯和富集的方法。可用于液相和气相,对于液相分离,可用于水溶液体系、水溶胶体系以及非水溶液体系等。膜技术是一种分子水平上的分离技术。 近年来
关于果胶的微波法的优缺点介绍
优点:与传统方法相比,微波萃取能大大加快组织的水解,使果胶提取时间由传统方法90min缩短为5min,而且受热均匀,不会破坏果胶长链结构,同时降低了能耗,工艺操作容易控制,降低劳动强度,所得样品质量好,凝胶性能、色泽、溶解性等指标都有所提高,产率比传统方法提高了2%。除此之外,还大量节约酒精溶剂
果胶的酶解法制备介绍
由于果胶分子与钙镁及铁离子结合、纤维素和半纤维素等细胞壁多糖与果胶分子形成共价键、果胶分子中的羟基与细胞壁的组分形成离子键、果胶分子彼此间与其他成分间的物理缠绕等等,而使果胶以原果胶的形式存在,用酶适当处理后,由于细胞壁降解,可提高果胶得率、简化工艺。 酶法提取果胶基本分两个阶段,如果用酸法提
果胶的制备微波法
微波是一种频率为300MHz~300GHz的电磁波,其对应的波长为1mm~1m,比可见光的波长长,属高频波段的电磁波。它具有电磁波的反射、透射、干涉、衍射、偏振以及伴随着电磁波的能量传输等波动特性,还具有高频特性、热特性及非热特性。它主要用于通讯、广播电视等领域。 20世纪60年代开始,人们逐渐将微
果胶的制备酶解法
由于果胶分子与钙镁及铁离子结合、纤维素和半纤维素等细胞壁多糖与果胶分子形成共价键、果胶分子中的羟基与细胞壁的组分形成离子键、果胶分子彼此间与其他成分间的物理缠绕等等,而使果胶以原果胶的形式存在,用酶适当处理后,由于细胞壁降解,可提高果胶得率、简化工艺。酶法提取果胶基本分两个阶段,如果用酸法提取少量果
锂电池正极材料的制备方法离子交换法介绍
离子交换法Armstrong等用离子交换法制备的LiMnO2,获得了可逆放电容量达270mA·h/g高值,此方法成为研究的新热点,它具有所制电极性能稳定,电容量高的特点。但过程涉及溶液重结晶蒸发等费能费时步骤,距离实用化还有相当距离。
微生物法制备果胶的相关介绍
有学者实验发现:将绞碎的原料浸入杀菌的水中,放入发酵罐中,接种5%的种液,30℃振荡培养,利用微生物产生的酶作用可使果胶从植物组织中游离出来。这种酶能选择性分解植物组织中的复合多糖体,从而可有效地提取出植物组织中的果胶,其作用一定时间后,过滤培养液,得到果胶提取液。对培养微生物的培养基并无特别要
简述果胶的微波法制备
微波是一种频率为300MHz~300GHz的电磁波,其对应的波长为1mm~1m,比可见光的波长长,属高频波段的电磁波。它具有电磁波的反射、透射、干涉、衍射、偏振以及伴随着电磁波的能量传输等波动特性,还具有高频特性、热特性及非热特性。它主要用于通讯、广播电视等领域。 20世纪60年代开始,人们逐渐
果胶的制备膜分离技术
膜技术(Membrane Technology)是用天然或人工合成的高分子薄膜,以外界能量或化学位差为推动力,对双组分或多组分的溶质和溶剂进行分离、分级、提纯和富集的方法。可用于液相和气相,对于液相分离,可用于水溶液体系、水溶胶体系以及非水溶液体系等。膜技术是一种分子水平上的分离技术。 近年来,国外
关于果胶改性的方法介绍
随着人们对营养健康的关注以及在果胶构效关系方面取得了一定的成绩,于是人们试图对果胶的一些结构进行人为的修饰,以得到某些具有特殊功能的果胶产品,这类果胶称为修饰果胶或改性果胶(modified pectin,MP)。果胶可通过化学、物理和生物,包括酶法来改性。 目前对于果胶的改性已取得一些成绩,这
简述果胶的膜分离技术的优缺点
优点:与真空浓缩相比,膜分离浓缩技术具有能耗低(液体无相变),操作工艺简单,具有选择性;可去除果胶提取液中的糖分和低聚物,从而提高果胶的品质;无需加热,对果胶品质无损害;设备维护方便、简单等优势。 缺点:膜难于清洗,容易堵塞;必须在适宜的条件下使用,不能置于高温高压的条件下,否则会失效。此外,
LB膜的优缺点和制备方法
LB膜的优点 (1)膜厚为分子级水平(纳米数量级),具有特殊的物理化学性质;(2)可以制备单分子膜,也可以逐层累积形成多层LB膜,组装方式任意选择;(3)可以人为选择不同的高分子材料,累积不同的分子层,使之具有多种功能;(4)成膜可在常温常压下进行,所需能量小,基本不破坏成膜材料的高分子结构;(5)
果胶的制备微生物法
有学者实验发现:将绞碎的原料浸入杀菌的水中,放入发酵罐中,接种5%的种液,30℃振荡培养,利用微生物产生的酶作用可使果胶从植物组织中游离出来。这种酶能选择性分解植物组织中的复合多糖体,从而可有效地提取出植物组织中的果胶,其作用一定时间后,过滤培养液,得到果胶提取液。对培养微生物的培养基并无特别要求,
果胶的制备传统酸提取法
传统的工业果胶生产方法是酸提取法,所用的酸可以是硫酸、盐酸、磷酸等。为了改善果胶成品的色泽,也可以用亚硫酸。其基本原理是利用果胶在稀酸溶液中能水解,将果皮中的原果胶质水解为水溶性果胶,从而使果胶从桔皮中转到水相中,生成可溶于水的果胶。然后利用沉淀法或盐析法分离果胶,工业上常用金属盐析或有机溶剂(乙醇
微波法提取果胶的方法介绍
微波是一种频率为300MHz~300GHz的电磁波,其对应的波长为1mm~1m,比可见光的波长长,属高频波段的电磁波。它具有电磁波的反射、透射、干涉、衍射、偏振以及伴随着电磁波的能量传输等波动特性,还具有高频特性、热特性及非热特性。它主要用于通讯、广播电视等领域。 20世纪60年代开始,人们逐渐将微
盐析法提取果胶的方法介绍
多价金属盐沉淀法,目前在生产上广泛采用。具体方法是:在果胶液中加入一定量的MgCl2、CuCl2或AlCl3然后用氨等调节pH,使之形成碱式金属盐,此碱式金属盐与果胶形成络合物沉淀出来,然后再经过脱盐漂洗和干燥得到果胶成品。具体流程是:橘皮残渣-复水-灭酶-漂洗-沥干-加酸萃取-过滤-加盐沉析-抽滤
酶解法提取果胶的方法介绍
由于果胶分子与钙镁及铁离子结合、纤维素和半纤维素等细胞壁多糖与果胶分子形成共价键、果胶分子中的羟基与细胞壁的组分形成离子键、果胶分子彼此间与其他成分间的物理缠绕等等,而使果胶以原果胶的形式存在,用酶适当处理后,由于细胞壁降解,可提高果胶得率、简化工艺。 酶法提取果胶基本分两个阶段,如果用酸法提取少量
简述果胶的微生物法的优缺点
优点:微生物法低温发酵提取果胶,萃取液中果皮不破碎,也不需进行热、酸处理,容易分离,萃取完全,易过滤。萃取的果胶分子量大,果胶的胶凝度高,质量稳定。此法还能有效地克服酸水解法生产果胶的诸多不足,具有低消耗、低污染等特点,具有广阔的应用前景。 缺点:微生物法提取果胶受橘皮的预处理,反应时的固液化
离子交换法纯化方法的介绍
若将离子交换法与其他纯化水质方法(例如 反渗透法、过滤法和活性碳吸附法)组合应用时,则离子交换法在整个纯化系统中,将扮演非常重要的一个部分。离子交换法能有效的去除离子,却无法有效的去除大部分的有机物或微生物。而微生物可附着在树脂上,并以树脂作为培养基,使得微生物可快速生长并产生热源。因此,需配合
关于果胶酶的贮存方法介绍
本品最佳贮藏条件为4-15℃,一般为室温贮藏,避免阳光直射。 果胶酶本质上是聚半乳糖醛酸水解酶,果胶酶水解果胶主要生成β-半乳糖醛酸,可用次碘酸钠法进行半乳醛酸的定量,从而测定果胶酶活力。
果胶的性状介绍
果胶为白色或带黄色或浅灰色、浅棕色的粗粉至细粉,几无臭,口感黏滑。溶于20倍水,形成乳白色粘稠状胶态溶液,呈弱酸性。耐热性强,几乎不溶于乙醇及其他有机溶剂。用乙醇、甘油、砂糖糖浆湿润,或与3倍以上的砂糖混合可提高溶解性。在酸性溶液中比在碱性溶液中稳定。
果胶的改性介绍
随着人们对营养健康的关注以及在果胶构效关系方面取得了一定的成绩,于是人们试图对果胶的一些结构进行人为的修饰,以得到某些具有特殊功能的果胶产品,这类果胶称为修饰果胶或改性果胶(modified pectin,MP)。果胶可通过化学、物理和生物,包括酶法来改性。 目前对于果胶的改性已取得一些成绩,这方面
果胶的制作方法
制作工艺流程是:原料→预处理→抽提→脱色→浓缩→干燥→成品。1.原料及其处理 鲜果皮或干燥保存的柚皮均可作为原料。鲜果皮应及时处理,以免原料中产生果胶酶类水解作用,使果胶产量或胶凝度下降。先将果皮搅碎至粒径2~3mm,置于蒸汽或沸水中处理5~8min,以钝化果胶酶活性。杀酶后的原料再在水中清泡30m
果胶的基本提取方法
果胶是一种天然的复合多糖类高分子化合物,在食品、医药和日用化学行业具有广泛的用途。现将西瓜皮提取果胶技术的具体操作方法介绍如下:1.蒸煮压榨。选用新鲜无毒无腐的西瓜皮,清洗除去泥土后放在蒸笼中,等上汽后蒸30-40分钟,以西瓜皮蒸透变软、有水析出并滴下为宜(以杀灭活细胞中的果胶酶)。然后将其放于包装
醇沉淀法提取果胶的方法介绍
醇沉淀法是经常使用而且最早实现工业化生产的方法。其基本原理是利用果胶不溶于醇类溶剂的特点,加入大量醇,使果胶的水溶液中形成醇-水的混合剂以使果胶沉淀出来。将析出的果胶块经压榨、洗涤、干燥和粉碎后便得到成品。 也可用异丙醇等其他溶剂代替酒精。其具体的提取过程:原料预处理-酸液萃取-过滤-浓缩-乙醇沉淀