量子数的研究历史

表征微观粒子运动状态的一些特定数字。量子化的概念最初是由普朗克引入的,即电磁辐射的能量和物体吸收的辐射能量只能是量子化的,是某一最小能量值的整数倍,这个整数n称为量子数.事实上不仅原子的能量还有它的动量、电子的运行轨道、电子的自旋方向都是量子化的,即是说电子的动量、运动轨道的分布和自旋方向都是不连续的,此外我们将看到不仅电子还有其它基本粒子的能量、运动轨道分布、磁矩等都是量子化.在多电子原子中,轨道角动量量子数也是决定电子能量高低的因素。所以,在多电子原子中,主量子数相同、轨道角动量量子数自旋量子数不同的电子,其能量是不相等的。上述三个量子数的合理组合决定了一个原子轨道。但要描述电子的运动状态还需要有第四个量子数——自旋角动量量子数表示原子内电子运动的能量、角动量等的一组整数或半整数。量子数按量子力学原理,原子中核外电子运动、状态、角动量都不是连续变化的,而是跳跃式变化的,即量子化的。量子数有主量子数、角量子数、磁量子数和自旋量......阅读全文

量子数的研究历史

表征微观粒子运动状态的一些特定数字。量子化的概念最初是由普朗克引入的,即电磁辐射的能量和物体吸收的辐射能量只能是量子化的,是某一最小能量值的整数倍,这个整数n称为量子数.事实上不仅原子的能量还有它的动量、电子的运行轨道、电子的自旋方向都是量子化的,即是说电子的动量、运动轨道的分布和自旋方向都是不连续

量子数的应用与研究

基本粒子包含不少量子数,一般来说它们都是粒子本身的。但需要明白的是,基本粒子是粒子物理学上标准模型的量子态,所以这些粒子量子数间的关系跟模型的哈密顿算符一样,就像玻尔原子量子数及其哈密顿算符的关系那样。亦即是说,每一个量子数代表问题的一个对称性。这在场论中有着更大的用处,被用于识别时空及内对称。一般

量子数的定义

量子数表征原子、分子、原子核或亚原子粒子状态和性质的数。通常取整数或半整数分立值。量子数是这些粒子系统内部一定相互作用下存在某些守恒量的反映,与这些守恒量相联系的量子数又称为好量子数,它们可表征粒子系统的状态和性质。在原子物理学中,对于单电子原子(包括碱金属原子)处于一定的状态,有一定的能量、轨道角

量子数的类型介绍

主量子数量子数描述电子在原子核外运动状态的4个量子数之一,习惯用符号n表示。它的取值是正整数,n=1,2,3,……主量子数是决定轨道(或电子)能量的主要量子数。对同一元素,轨道能量随着n的增大而增加。在周期表中有些元素会发生轨道能量“倒置”现象。例如,在20号Ca元素处,K(19号)的E3d>E4s

什么是量子数?

量子数(quantum number)是量子力学中表述原子核外电子运动的一组整数或半整数。因为核外电子运动状态的变化不是连续的,而是量子化的,所以量子数的取值也不是连续的,而只能取一组整数或半整数。量子数包括主量子数n、角量子数l、磁量子数m和自旋量子数s四种,前三种是在数学解析薛定谔方程过程中引出

量子数的重要意义

量子数描述量子系统中动力学上各守恒数的值。它们通常按性质地描述原子中电子的各能量,但也会描述其他物理量(如角动量、自旋等)。由于任何量子系统都能有一个或以上的量子数,列出所有可能的量子数是件没有意义的工作。每一个系统都必需要对系统进行全面分析。任何系统的动力学都由一量子哈密顿算符,H,所描述。系统中

最新研究确定Zc(3900)的自旋和宇称量子数

  8月16日,北京谱仪III(BESIII)实验国际合作组关于Zc(3900)的自旋和宇称量子数测量的文章发表在《物理评论快报》(Physical Review Letters)上,并被《物理》(Physics)杂志编辑作为特色研究论文推介。在这篇题为“完善四夸克态档案”(Filling in a

乙烯的研究历史

早在20世纪初就发现用煤气灯照明时有一种气体能促进绿色柠檬变黄而成熟,这种气体就是乙烯。但直至60年代初期用气相层析仪从未成熟的果实中检测出极微量的乙烯后,乙烯才被列为植物激素。

色谱的研究历史

  1906年Tswett 研究植物色素分离时提出色谱法概念;他在研究植物叶的色素成分时,将植物叶子的萃取物倒入填有碳酸钙的直立玻璃管内,然后加入石油醚使其自由流下,结果色素中各组分互相分离形成各种不同颜色的谱带。按光谱的命名方式,这种方法因此得名为色谱法。以后此法逐渐应用于无色物质的分离,“色谱”

细胞的研究历史

  细胞(Cells)是由英国科学家罗伯特·胡克(Robert Hooke,1635~1703)于1665年发现的。当时他用自制的光学显微镜观察软木塞的薄切片,放大后发现一格一格的小空间,就以英文的cell命名之,而这个英文单字的意义本身就有小房间一格一格的用法,所以并非另创的字汇。而这样观察到的细

细胞的研究历史

  细胞(Cells)是由英国科学家罗伯特·胡克(Robert Hooke,1635~1703)于1665年发现的。当时他用自制的光学显微镜观察软木塞的薄切片,放大后发现一格一格的小空间,就以英文的cell命名之,而这个英文单字的意义本身就有小房间一格一格的用法,所以并非另创的字汇。而这样观察到的细

磷脂的研究历史

1812年,磷脂最早是由Uauquelin从人脑中发现。1844年,科学家Golbley从蛋黄中分离出来,并于1850年按照希腊文lekithos(蛋黄)命名为Lecithin(卵磷脂)。1861年,科学家Topler又从植物种子发现了磷脂的存在。1925年,科学家Leven将卵磷脂(磷脂酰胆碱)从

钾的研究历史

   钾盐以硝石(硝酸钾,KNO3),明矾(十二水合硫酸铝钾,KAl(SO4)2·12H2O),还有草木灰(碳酸钾,K2CO3)的形式已经被认知了几个世纪。它们被用于火药,燃料和肥皂的制造。把含钾物质还原为元素挫败了早期的化学家,而且钾被Antoine Lavoisier分类为“泥土”。由于钾的活动

叶酸的研究历史

1931年,印度孟买产科医院的医生L.Wills等人发现,酵母或肝脏浓缩物对妊娠妇女的巨幼红细胞性贫血症状有一定的作用,认为这些提取物中有某种抗贫血因子;1935年,有人发现酵母和肝脏提取液对猴子贫血症状有一定的作用,描述其为VM;1939年,有人在肝中发现了抗击贫血的因子,称为VBe;1941年H

质膜的研究历史

1. E. Overton 1895发现凡是溶于脂肪的物质很容易透过植物的细胞膜,而不溶于脂肪的物质不易透过细胞膜,因此推测细胞膜由连续的脂类物质组成。2. E. Gorter & F. Grendel 1925用有机溶剂提取了人类红细胞质膜的脂类成分,将其铺展在水面,测出膜脂展开的面积二倍于细胞表

核酸的研究历史

  核酸的发现  1869年,F.Miescher从脓细胞中提取到一种富含磷元素的酸性化合物,因存在于细胞核中而将它命名为“核质”(nuclein)。但核酸(nucleic acids)这一名词在Miescher发现“核质”20年后才被正式启用,当时已能提取不含蛋白质的核酸制品。早期的研究仅将核酸看

细胞的研究历史

  细胞(Cells)是由英国科学家罗伯特·胡克(Robert Hooke,1635~1703)于1665年发现的。当时他用自制的光学显微镜观察软木塞的薄切片,放大后发现一格一格的小空间,就以英文的cell命名之,而这个英文单字的意义本身就有小房间一格一格的用法,所以并非另创的字汇。而这样观察到的细

核酶的研究历史

1982年,美国科学家T.Cech和他的同事在对“四膜虫编码rRNA前体的DNA序列含有间隔内含子序列”的研究中发现,自身剪接内含子的RNA具有催化功能,并因此获得了1989年诺贝尔化学奖。为了与酶(enzyme)区分,Cech将它命名为ribozyme,其中文译名“核酶”已得到大多数人的认可。因为

酶的研究历史

1773年,意大利科学家斯帕兰扎尼(L.Spallanzani,1729—1799)设计了一个巧妙的实验:将肉块放入小巧的金属笼中,然后让鹰吞下去。过一段时间他将小笼取出,发现肉块消失了。1833年,法国的佩恩(Payen)和帕索兹(Persoz)从麦芽的水解物中用酒精沉淀得到一种可使淀粉水解生成糖

酶的研究历史

1773年,意大利科学家斯帕兰扎尼(L.Spallanzani,1729-1799)设计了一个巧妙的实验:将肉块放入小巧的金属笼中,然后让鹰吞下去。过一段时间他将小笼取出,发现肉块消失了。1833年,法国的佩恩(Payen)和帕索兹(Persoz)从麦芽的水解物中用酒精沉淀得到一种可使淀粉水解生成糖

阿糖胞苷的研究历史

阿糖胞苷最早在1959年由加州大学伯克利分校的Richard Walwick、Walden Roberts和Charles Dekker合成。美国食品药品监督管理局在1969年6月批准阿糖胞苷进入市场。它最初由Upjohn公司以Cytosar-U的商品名出售这种药物的化学结构是胞嘧啶与阿拉伯糖结合成

数字PCR的研究历史

1983年由美国Mullis首先提出设想,1985年发明了聚合酶链反应,即简易DNA扩增法,标志着PCR技术的真正诞生。1999 年,美国学者 Kenneth Kinzler 与 Bert Vogelstein 首次提出了数字 PCR (digital PCR,dPCR)的概念,实现了核酸拷贝数绝对

卵磷脂的研究历史

1812年,磷脂最早是由Uauquelin从人脑中发现。1844年,科学家Golbley从蛋黄中分离出来,并于1850年按照希腊文lekithos(蛋黄)命名为Lecithin(卵磷脂)。1861年,科学家Topler又从植物种子发现了磷脂的存在。1925年,科学家Leven将卵磷脂(磷脂酰胆碱)从

超声聚合的研究历史

  聚合物的声化反应最早起源于上世纪30年代,反应中发现超声作用可使淀粉和明胶的黏度发生变化。50年代对该现象的广泛研究表明,是空化作用导致分子链段断裂的结果。空化作用,即当超声波经过液体介质时,导致的极短时间内大量微气泡形成、生长、崩溃的过程。声化学理论计算和对应实验表明,空化作用可使空化泡相界面

转运RNA的研究历史

在tRNA被发现以前,佛朗西斯·克里克就假设有种可以将RNA讯息转换成蛋白质讯息的适配分子存在。1960年代早期,亚历山大·里奇、唐纳德·卡斯帕尔等生物学家开始研究tRNA的结构,1965年,罗伯特·W·霍利首次分离了tRNA,并阐明了其序列与大致的结构,他因此贡献而获得1968年的诺贝尔生理学或医

电泳现象的研究历史

电泳(Electrophoresis)是指带电荷的粒子或分子在电场中移动的现象称为电泳。大分子的蛋白质,多肽,病毒粒子,甚至细胞或小分子的氨基酸,核苷等在电场中都可作定向泳动。1937年Tiselius成功地研制了界面电泳仪进行血清蛋白电泳,它是在一U型管的自由溶液中进行的,电泳后用光学系统使各种蛋

转运RNA的研究历史

在tRNA被发现以前,佛朗西斯·克里克就假设有种可以将RNA讯息转换成蛋白质讯息的适配分子存在。1960年代早期,亚历山大·里奇、唐纳德·卡斯帕尔等生物学家开始研究tRNA的结构,1965年,罗伯特·W·霍利首次分离了tRNA,并阐明了其序列与大致的结构,他因此贡献而获得1968年的诺贝尔生理学或医

转运RNA的研究历史

在tRNA被发现以前,佛朗西斯·克里克就假设有种可以将RNA讯息转换成蛋白质讯息的适配分子存在。1960年代早期,亚历山大·里奇、唐纳德·卡斯帕尔等生物学家开始研究tRNA的结构,1965年,罗伯特·W·霍利首次分离了tRNA,并阐明了其序列与大致的结构,他因此贡献而获得1968年的诺贝尔生理学或医

植物激素的研究历史

C.Darwin在1880年研究植物向性运动时,只有各种激素的协调配合,发现植物幼嫩的尖端受单侧光照射后产生的一种影响,能传到茎的伸长区引起弯曲。1928年荷兰F.W.温特从燕麦胚芽鞘尖端分离出一种具生理活性的物质,称为生长素,它正是引起胚芽鞘伸长的物质。1934年荷兰F.克格尔等从人尿得到生长素的

叶绿素荧光的研究历史

  叶绿素荧光现象是由传教士Brewster首次发现的。1834年Brewster发现当一束强太阳光穿过月桂叶子的乙醇提取液时,溶液的颜色变成了绿色的互补色——红色,而且颜色随溶液的厚度而变化,这是历史上对叶绿素荧光及其重吸收现象的首次记载。后来,Stokes(1852)认识到这是一种光发射现象,并