N乙酰葡糖胺的生物合成途径

生物合成途径是通过乙酰辅酶A将葡糖胺-6-磷酸N-乙酰化,进而将N-乙酰萄糖胺-1-磷酸转变成UDP-N-乙酰葡糖胺,这个核苷酸糖通过糖酰基转换反应而纳入多糖链。......阅读全文

N乙酰葡糖胺的生物合成途径

生物合成途径是通过乙酰辅酶A将葡糖胺-6-磷酸N-乙酰化,进而将N-乙酰萄糖胺-1-磷酸转变成UDP-N-乙酰葡糖胺,这个核苷酸糖通过糖酰基转换反应而纳入多糖链。

N乙酰葡糖胺的分类

在细菌细胞壁的胞壁质、霉菌细胞壁的几丁质,动植物细胞的糖蛋白、粘多糖等细胞或组织的支持结构物质中,以多糖组成成分而广泛分布。

N乙酰葡糖胺的基本信息

N-乙酰葡糖胺 N-acetylglucosamine D型化学系统名称为2-乙酰胺-2-脱氧-D-葡萄糖。在细菌细胞壁的胞壁质、霉菌细胞壁的几丁质。中文名N-乙酰葡糖胺外文名N-acetylglucosamine化学系统2-乙酰胺-2-脱氧-D-葡萄糖应    用动植物细胞的糖蛋白

N乙酰葡糖胺转移酶的基本信息

N-乙酰葡糖胺转移酶是生物化学与分子生物学术语。

关于氨基己糖的基本介绍

  作为生物成分来说,N-乙酰的衍生物构成多糖的葡糖胺和半乳糖胺分布得最广,其他如甘露糖胺(N-乙酰甘露糖胺)则以N-乙酰神经氨(糖)酸的形态出现。但任何一种都是由于D-己糖2位的羟基可为氨基所代换,因此这些作为系统名而言,多被称为2-脱氧-2-氨基-D-己糖。经过果糖-6磷酸→葡糖胺-6-磷酸→N

氨基己糖的分类

作为生物成分来说,N-乙酰的衍生物构成多糖的葡糖胺和半乳糖胺分布得最广,其他如甘露糖胺(N-乙酰甘露糖胺)则以N-乙酰神经氨(糖)酸的形态出现。但任何一种都是由于D-己糖2位的羟基可为氨基所代换,因此这些作为系统名而言,多被称为2-脱氧-2-氨基-D-己糖。经过果糖-6磷酸→葡糖胺-6-磷酸→N-乙

关于葡糖胺的详细描述

  代表性的氨基糖。为己糖胺的一种。自然界中的D型主要以N-乙酰葡糖胺的形态存在于几丁质、粘液多糖、糖蛋白质、糖脂质和细菌的细胞壁的胞壁质(murein),脂多糖中,作为复合多糖的组成糖分布最广。化学系统称为α-氨基-2-去氧-D-葡萄糖。肝素中含有N-硫酸比D-葡糖胺。链霉素中含有N-甲基-L-葡

泛酸的生物合成途径

维生素B5是由α-酮异戊酸和L-天冬氨酸两种物质经过四步酶促反应生成。最后在泛酸合成酶的催化下由ATP提供能量连接β-Ala和泛解酸生成维生素B5。利用E.coli泛酸缺陷型菌株证明了泛酸的生物合成途径是L-Val生物合成的分支。因此如果微生物失去合成L-Val、β-Ala或半胱氨酸的能力也将无法合

叶绿素a的生物合成途径

叶绿素a的生物合成途径,是由琥珀酰辅酶A和甘氨酸缩合成δ-氨基乙酰丙酸,两个δ-氨基乙酰丙酸缩合成吡咯衍生物胆色素原,然后再由4个胆色素原聚合成一个卟啉环──原卟啉Ⅳ,原卟啉Ⅳ是形成叶绿素和亚铁血红素的共同前体,与亚铁结合就成亚铁血红素,与镁结合就成镁原卟啉。镁原卟啉再接受一个甲基,经环化后成为具有

N,N二乙基乙酰胺的合成路线有哪些

1.通过N,N-二甲基乙胺合成N,N-二乙基乙酰胺,收率约20%;2.通过乙酸和二乙胺合成N,N-二乙基乙酰胺,收率约77%;

莽草酸生物合成途径

糖酵解产生的磷酸烯醇式丙酮酸(PEP)和戊糖磷酸途径产生的D-赤藓糖-4-磷酸作用形成中间产物3-脱氧-D-阿拉伯庚酮糖酸-7-磷酸,进一步环化成重要中间产物莽草酸。莽草酸再与PEP作用,形成3-烯醇丙酮酸莽草酸-5-磷酸,脱去Pi,形成分支酸。分支酸是莽草酸途径的重要枢纽物质,它以后的去向分为两个

性激素的生物合成途径

合成贮存性激素有共同的生物合成途径:以胆固醇为前体,通过侧链的缩短,先产生21碳的孕酮或孕烯醇酮,继而去侧链后衍变为19碳的雄激素,再通过A环芳香化而生成18碳的雌激素。性激素的代谢失活途径也大致相同,即在肝、肾等代谢器官中形成葡萄糖醛酸酯或硫酸酯等水溶性较强的结合物,然后随尿排出,或随胆汁进入肠道

赖氨酸的生物合成途径

赖氨酸的生物合成途径是1950年以后逐渐被阐明的。赖氨酸的生物合成途径与其他氨基酸不同,依微生物的种类而异。细菌的赖氨酸生物合成途径需要经过二氨基庚二酸(DAP)合成赖氨酸。酵母、霉菌的赖氨酸生物合成途径,需要经过α-氨基己二酸合成赖氨酸。同样是二氨基庚二酸合成赖氨酸途径,不同的细菌,赖氨酸生物合成

对乙酰氨基酚生物合成

  近日,北京化工大学研究团队在《Metabolic Engineering》杂志发表题为“Design and construction of an artificial pathway for biosynthesis of acetaminophen in Escherichia coli”的

N乙酰胞壁酸简介

N-乙酰胞壁酸 N-acetylmuramic acid 系胞壁酸的N-乙酰衍生物,为在细菌细胞壁的胞壁肽聚糖中组成N-乙酰-β-D-萄糖胺基(1→4)-N-乙酞-β-D-胞壁酰(1→4)的双糖重复单位。在胞壁酸的羧基结合有含D-氨基酸的短肽,构成牢固的胞壁质分子的基本骨架。细菌细胞中存在着催化UD

N乙酰胞壁酸的简介

  N-乙酰胞壁酸 N-acetylmuramic acid 系胞壁酸的N-乙酰衍生物,为在细菌细胞壁的胞壁肽聚糖中组成N-乙酰-β-D-萄糖胺基(1→4)-N-乙酞-β-D-胞壁酰(1→4)的双糖重复单位。在胞壁酸的羧基结合有含D-氨基酸的短肽,构成牢固的胞壁质分子的基本骨架。细菌细胞中存在着催化

初级溶酶体的形成过程

内质网上核糖体合成溶酶体蛋白→进入内质网腔进行N-连接的糖基化修饰,溶酶体酶蛋白先带上3个葡萄糖、9个甘露糖和2个N-乙酰葡萄糖胺,后切除三分子葡萄糖和一分子甘露糖→进入高尔基体Cis面膜囊→N-乙酰葡糖胺磷酸转移酶识别溶酶体水解酶的信号斑→将N-乙酰葡糖胺磷酸转移在1~2个甘露糖残基上→在中间膜囊

溶酶体的形成过程

  初级溶酶体是在高尔基体的trans面以出芽的形式形成的,其形成过程如下:  内质网上核糖体合成溶酶体蛋白→进入内质网腔进行N-连接的糖基化修饰,溶酶体酶蛋白先带上3个葡萄糖、9个甘露糖和2个N-乙酰葡萄糖胺,后切除三分子葡萄糖和一分子甘露糖→进入高尔基体Cis面膜囊→N-乙酰葡糖胺磷酸转移酶识别

简述溶酶体的形成过程

  初级溶酶体是在高尔基体的trans面以出芽的形式形成的,其形成过程如下:  内质网上核糖体合成溶酶体蛋白→进入内质网腔进行N-连接的糖基化修饰,溶酶体酶蛋白先带上3个葡萄糖、9个甘露糖和2个N-乙酰葡萄糖胺,后切除三分子葡萄糖和一分子甘露糖→进入高尔基体Cis面膜囊→N-乙酰葡糖胺磷酸转移酶识别

溶酶体的形成过程

  初级溶酶体是在高尔基体的trans面以出芽的形式形成的,其形成过程如下:  内质网上核糖体合成溶酶体蛋白→进入内质网腔进行N-连接的糖基化修饰,溶酶体酶蛋白先带上3个葡萄糖、9个甘露糖和2个N-乙酰葡萄糖胺,后切除三分子葡萄糖和一分子甘露糖→进入高尔基体Cis面膜囊→N-乙酰葡糖胺磷酸转移酶识别

溶酶体的形成过程

初级溶酶体是在高尔基体的trans面以出芽的形式形成的,其形成过程如下:内质网上核糖体合成溶酶体蛋白→进入内质网腔进行N-连接的糖基化修饰,溶酶体酶蛋白先带上3个葡萄糖、9个甘露糖和2个N-乙酰葡萄糖胺,后切除三分子葡萄糖和一分子甘露糖→进入高尔基体Cis面膜囊→N-乙酰葡糖胺磷酸转移酶识别溶酶体水

脱落酸生物合成的途径

类萜途径(Terpenoid pathway)该途径中脱落酸的合成是由甲瓦龙酸(MVA)经过异戊烯酸焦磷酸(IPP),合成法呢基焦磷酸(Farnesyl pyrophosphate,FPP),再经过一些未明的过程而形成脱落酸。此途径亦称为C15直接途径。MVA→→FPP→→ABA 。类胡萝卜素途径(

脱落酸生物合成的途径

类萜途径(Terpenoid pathway)该途径中脱落酸的合成是由甲瓦龙酸(MVA)经过异戊烯酸焦磷酸(IPP),合成法呢基焦磷酸(Farnesyl pyrophosphate,FPP),再经过一些未明的过程而形成脱落酸。此途径亦称为C15直接途径。MVA→→FPP→→ABA 。类胡萝卜素途径(

赖氨酸的生物合成途径介绍

赖氨酸的生物合成途径是1950年以后逐渐被阐明的。赖氨酸的生物合成途径与其他氨基酸不同,依微生物的种类而异。细菌的赖氨酸生物合成途径需要经过二氨基庚二酸(DAP)合成赖氨酸。酵母、霉菌的赖氨酸生物合成途径,需要经过α-氨基己二酸合成赖氨酸。同样是二氨基庚二酸合成赖氨酸途径,不同的细菌,赖氨酸生物合成

乙酰葡糖胺糖苷酶的生化特性

AFU,主要参与含岩藻糖基的各种糖脂、糖蛋白、粘多糖等大分子物质的分解代谢。广泛存在于人体各组织细胞溶酶体和体液中。 标本血清、尿液、唾液、泪液等标本均可。标本应澄清,4℃保存3天,-20℃保存3个月,避免反复冻融。溶血、黄疸、高血脂、污染标本严重影响结果。

N乙酰神经氨酸的简介

  唾液酸(SA),学名叫作“N-乙酰基神经氨酸”,是一种天然存在的碳水化合物。它最初由颌下腺粘蛋白中分离而出,也因此而得名。唾液酸通常以低聚糖,糖脂或者糖蛋白的形式存在。人体中,脑的唾液酸含量最高。脑灰质中的唾液酸含量是肝、肺等内脏器官的15倍。唾液酸的主要食物来源是母乳,也存在于牛奶、鸡蛋和奶酪

赖氨酸的生物合成途径的介绍

  赖氨酸的生物合成途径是1950年以后逐渐被阐明的。赖氨酸的生物合成途径与其他氨基酸不同,依微生物的种类而异。细菌的赖氨酸生物合成途径需要经过二氨基庚二酸(DAP)合成赖氨酸。酵母、霉菌的赖氨酸生物合成途径,需要经过α-氨基己二酸合成赖氨酸。同样是二氨基庚二酸合成赖氨酸途径,不同的细菌,赖氨酸生物

Cell:不同生物的N糖基化修饰途径

  蛋白质翻译后修饰是指蛋白质在翻译后的化学修饰,它包含磷酸化、乙酰化、泛素化和甲基化等类型, 在调节蛋白质活性、结构和功能等方面发挥着重要的作用, 其重要性已被人们广泛认知。  随着许多新的翻译后修饰类型的出现, 蛋白质翻译后修饰这一研究领域变得越来越复杂而有趣。其中糖类的翻译后修饰能帮助蛋白定位

乙酰葡糖胺糖苷酶的基本信息

中文名称乙酰葡糖胺糖苷酶英文名称acetylglucosaminidase定  义编号:EC 3.2.1.50。一种糖苷水解酶。催化N-乙酰氨基葡糖苷键的水解,释放乙酰氨基葡糖。在各种糖复合体的降解过程中起关键作用。应用学科生物化学与分子生物学(一级学科),酶(二级学科)

乙酰葡糖胺糖苷酶的-基本信息

中文名称乙酰葡糖胺糖苷酶英文名称acetylglucosaminidase定  义编号:EC 3.2.1.50。一种糖苷水解酶。催化N-乙酰氨基葡糖苷键的水解,释放乙酰氨基葡糖。在各种糖复合体的降解过程中起关键作用。应用学科生物化学与分子生物学(一级学科),酶(二级学科)