酮体的分解方式和途径
1、羟丁酸可由羟丁酸脱氢酶氧化生成乙酰乙酸,在肌肉线粒体中被3-酮脂酰辅酶A转移酶催化生成乙酰辅酶A和琥珀酸。也可由乙酰乙酰辅酶A合成酶激活,但前者活力高且分布广泛,起主要作用。2、丙酮由于量微在人体代谢上不占重要地位,而是随尿排出体外,当血中酮体显著增高时,丙酮也可从肺直接呼出,使呼出气体有烂苹果味。......阅读全文
酮体的分解方式和途径
1、羟丁酸可由羟丁酸脱氢酶氧化生成乙酰乙酸,在肌肉线粒体中被3-酮脂酰辅酶A转移酶催化生成乙酰辅酶A和琥珀酸。也可由乙酰乙酰辅酶A合成酶激活,但前者活力高且分布广泛,起主要作用。2、丙酮由于量微在人体代谢上不占重要地位,而是随尿排出体外,当血中酮体显著增高时,丙酮也可从肺直接呼出,使呼出气体有烂苹果
酮体的的应用方式
肝外组织(心肌、骨骼肌、大脑)中有活性很强的利用酮体的酶。乙酰乙酸在乙酰乙酸硫激酶或琥珀酰CoA转硫酶催化下,转变为乙酰乙酰CoA,然后再被硫解酶分解为两分子乙酰CoA,乙酰CoA进入三羧酸循环彻底氧化。可见肝内生酮肝外用是脂肪酸在肝中氧化的一个代谢特点。
药物的排泄方式和途径
(1)肾脏是药物排泄的主要器官,一般药物在体内大部分代谢产物通过肾由尿排出;也有的药物以原形由肾清除;(2)有些药物可以部分地通过胆汁分泌进入肠道,zui后随粪便排出;(3)药物及其代谢产物还可以通过汗腺、唾液腺、乳腺等途径排泄;(4)挥发性药物如吸入性麻醉剂等可通过呼吸系统排出体外。
脂肪酸分解的产物酮体的介绍
酮体(acetone bodies)是脂肪酸在肝脏进行正常分解代谢所生成的特殊中间产物,包括有乙酰乙酸(acetoacetic acid约占30%),β-羟丁酸(β?hydroxybutyric acid约占70%)和极少量的丙酮(acetone)。正常人血液中酮体含量极少,这是人体利用脂肪氧化
懒氨酸的代谢方式和途径
赖氨酸只有L-型被生物体吸收。游离的赖氨酸易吸收空气中的二氧化碳,制取结晶比较困难,一般商品都以赖氨酸盐酸盐的形式存在。赖氨酸易溶于水,与其它氨基酸相比,赖氨酸是通过口服最容易吸收的一种。摄入体内的赖氨酸,首先以主动运输的方式从小肠腔进入小肠粘膜细胞,然后通过门静脉进入肝脏;在肝脏,赖氨酸与其它氨基
葡萄糖的分解途径
天然的葡萄糖,无论是游离的或是结合的,均属D构型,在水溶液中主要以吡喃式构形含氧环存在,为α和β两种构型的衡态混合物。在常温条件下,可以α-D-葡萄糖的水合物(含1个水分子)形式从过饱和的水溶液中析出晶体,熔点为80℃;而在50~115℃之间析出的晶体则为无水α-D-葡萄糖,熔点146℃。115℃以
葡萄糖的分解途径
天然的葡萄糖,无论是游离的或是结合的,均属D构型,在水溶液中主要以吡喃式构形含氧环存在,为α和β两种构型的衡态混合物。 在常温条件下,可以α-D-葡萄糖的水合物(含1个水分子)形式从过饱和的水溶液中析出晶体,熔点为80℃;而在50~115℃之间析出的晶体则为无水α-D-葡萄糖,熔点146℃。1
环腺苷酸的生成和分解方式
生成: 腺苷酸环化酶(adenylate cyclase)催化三磷酸腺苷(ATP)成cAMP。代谢: cAMP磷酸二酯酶(PDE)水解cAMP产生5’-AMP。
葡萄糖的分解途径介绍
天然的葡萄糖,无论是游离的或是结合的,均属D构型,在水溶液中主要以吡喃式构形含氧环存在,为α和β两种构型的衡态混合物。在常温条件下,可以α-D-葡萄糖的水合物(含1个水分子)形式从过饱和的水溶液中析出晶体,熔点为80℃;而在50~115℃之间析出的晶体则为无水α-D-葡萄糖,熔点146℃。115
经外膜途径影响血管稳态的机制和方式
(1)血管外膜与炎症反应: “外膜炎症”是指血管外膜中有较多炎细胞浸润,形成“血管外膜三级淋巴样器官”(ATLO),除具有炎症最具特征性的渗出改变外,外膜还有明显的巨噬细胞、成纤维细胞的增殖、迁移和表型转化[2]。动脉粥样硬化(AS)是一种血管壁的炎症反应,且“外膜炎症”是AS的始动环节,是炎
简述脂肪酸氧化的其他途径分解
(1)奇数碳原子脂肪酸的氧化。人体含微量奇数碳脂肪酸,许多植物、海洋生物和石油酵母等含一定量的奇数碳脂肪酸。其β-氧化除生成乙酰CoA外,还生成1分子丙酰CoA,后者在β-羧化酶及异构酶的作用下生成琥珀酰CoA,经TCA途径彻底氧化。 (2)不饱和脂肪酸的氧化。机体中约一半以上的脂肪酸是不
氨基酸分解代谢的主要途径
氨基酸分解代谢的主要途径(trans deamination) 由转氨酶催化的转氨基作用和L-谷氨酸脱氢酶催化的谷氨酸氧化脱氨基作用联合而成。
酮体的生成和利用
酮体的生成酮体生成的部位是在肝细胞线粒体内。脂肪酸β-氧化生成的乙酰CoA是合成酮体的原料。其合成过程分三步进行。1.两分子乙酰CoA在硫解酶(thiolase)催化下缩合成1分子乙酰乙酰CoA。2.乙酰乙酰CoA再与1分子乙酰CoA缩合成β-羟-β-甲基戊二酸单酰CoA(HMG-CoA),催化这一
分解电压的分解电压和超电压
在标准状态下,在酸性介质中,以电池方式完成反应现在要使反应逆转,即拟以电解的方法完成下面的反应理论上要加1.23V的直流电即可。1.23V成为理论分解电压。实际情况如何?看如下的实验数据—电解池的电流随外电压变化的情况。当外电压小时,电解池的电流极小且变化很不显著。当电压超过1.70V后,电流明显增
酮体的生成过程和场所
酮体的生成酮体生成的部位是在肝细胞线粒体内。脂肪酸β-氧化生成的乙酰CoA是合成酮体的原料。其合成过程分三步进行。1.两分子乙酰CoA在硫解酶(thiolase)催化下缩合成1分子乙酰乙酰CoA。2.乙酰乙酰CoA再与1分子乙酰CoA缩合成β-羟-β-甲基戊二酸单酰CoA(HMG-CoA),催化这一
嘌呤核苷酸的分解代谢途径及过程
分解代谢反应基本过程是核苷酸在核苷酸酶的作用下水解成核苷,进而在酶作用下成自由的碱基及1-磷酸核糖。嘌呤碱最终分解成尿酸,随尿排出体外。黄嘌呤氧化酶是分解代谢中重要的酶。嘌呤核苷酸分解代谢主要在肝、小肠及肾中进行。嘌呤代谢异常:尿酸过多引起痛风症,患者血中尿酸含量升高,尿酸盐晶体可沉积于关节、软组织
金黄色葡萄球菌的传播途径和培养方式介绍
传播途径 一般来说,金黄色葡萄球菌可通过以下途径污染食品:食品加工人员、炊事员或销售人员带菌,造成食品污染;食品在加工前本身带菌,或在加工过程中受到了污染,产生了肠毒素,引起食物中毒;熟食制品包装不严,运输过程受到污染;奶牛患化脓性乳腺炎或禽畜局部化脓时,对肉体其他部位的污染。 培养方式
酮体是如何产生和利用的
在饥饿期间酮体是包括脑在内的许多组织的燃料,因此具有重要的生理意义。酮体是脂肪的分解产物。检测血酮体主要用于筛查、检测和监测1型或有时2型糖尿病的酮症酸中毒(DKA)。肝脏具有较强的合成酮体的酶系,但却缺乏利用酮体的酶系。酮体其重要性在于,由于血脑屏障的存在,除葡萄糖和酮体外的物质无法进入脑为脑组织
酮体是如何产生和利用的
在饥饿期间酮体是包括脑在内的许多组织的燃料,因此具有重要的生理意义。酮体是脂肪的分解产物。检测血酮体主要用于筛查、检测和监测1型或有时2型糖尿病的酮症酸中毒(DKA)。肝脏具有较强的合成酮体的酶系,但却缺乏利用酮体的酶系。酮体其重要性在于,由于血脑屏障的存在,除葡萄糖和酮体外的物质无法进入脑为脑组织
糖类的分解和代谢
葡萄糖的分解代谢途径主要有三条,根据其反应条件、反应过程及终产物的不同而分为:1)在不需氧时进行的无氧氧化(糖酵解);2)在需氧时进行的有氧氧化;3)生成磷酸戊糖和NADPH的磷酸戊糖途径。
非结核分枝杆菌的糖分解途径有哪些酶?
非结核分枝杆菌(Non-tuberculous mycobacteria,简称NTM)是一类广泛存在于环境中的细菌,其中一些种类可以引起人类和动物的感染。在非结核分枝杆菌的基因组中,糖分解途径相关酶编码基因主要包括以下几种: 糖酵解途径(Glycolysis):这是细胞获取能量的主要途径。非结
糖三种主要分解代谢途径是什么
糖酵解途径:糖酵解是一种无氧代谢途径,将葡萄糖分解成丙酮酸和乳酸等产物。这个过程在细胞质中进行,不需要氧气参与。 三羧酸循环(也称柠檬酸循环或Krebs循环):三羧酸循环是一种有氧代谢途径,将丙酮酸进一步分解成二氧化碳和水,并释放出大量的能量。这个过程在线粒体中进行,需要氧气参与。 糖原合成
酮体的检测
酮体(ketone bodies)由乙酰乙酸、β-羟丁酸和丙酮组成。最主要的来源为游离脂肪酸在肝脏的氧化代谢产物。正常情况下,长链脂肪酸被肝脏摄取,重新酯化为甘油三酯贮存在肝脏内,或转变为极低密度脂蛋白再进入血浆。而在未控制的糖尿病,由于胰岛素缺乏,导致重新酯化作用减弱而脂解作用增强,使血浆中游离
酮体的利用
肝外组织(心肌、骨骼肌、大脑)中有活性很强的利用酮体的酶。乙酰乙酸在乙酰乙酸硫激酶或琥珀酰CoA转硫酶催化下,转变为乙酰乙酰CoA,然后再被硫解酶分解为两分子乙酰CoA,乙酰CoA进入三羧酸循环彻底氧化。可见肝内生酮肝外用是脂肪酸在肝中氧化的一个代谢特点。
酮体的利用
肝外组织(心肌、骨骼肌、大脑)中有活性很强的利用酮体的酶。乙酰乙酸在乙酰乙酸硫激酶或琥珀酰CoA转硫酶催化下,转变为乙酰乙酰CoA,然后再被硫解酶分解为两分子乙酰CoA,乙酰CoA进入三羧酸循环彻底氧化。可见肝内生酮肝外用是脂肪酸在肝中氧化的一个代谢特点。
酮体的种类
三种酮体分别是:乙酰乙酸,如果不被氧化而产生能量的话,它就会成为作为以下两种其他酮体的来源。丙酮,不会作为能量来源,但会作为废料呼出或是排泄出体外。β-羟丁酸,根据国际纯粹与应用化学联合会的系统命名法,从技术层面上来说该物质并不是酮。这些物质都是由乙酰辅酶A分子合成而成。
酮体的检测
酮体(ketone bodies)由乙酰乙酸、β-羟丁酸和丙酮组成。最主要的来源为游离脂肪酸在肝脏的氧化代谢产物。正常情况下,长链脂肪酸被肝脏摄取,重新酯化为甘油三酯贮存在肝脏内,或转变为极低密度脂蛋白再进入血浆。而在未控制的糖尿病,由于胰岛素缺乏,导致重新酯化作用减弱而脂解作用增强,使血浆中游离
酮体的概念
脂肪酸在肝外组织(如心肌、骨骼肌等)经β-氧化生成的乙酰CoA,能彻底氧化生成二氧化碳和水,而在肝细胞中因为具有活性较强的合成酮体的酶系,β-氧化反应生成的乙酰CoA,大多转变为乙酰乙酸(acetoacetate),β-羟丁酸(β-hydroxybutyrate)和丙酮(acetone),这三种中间
酮体的组成
酮体是肝脏脂肪酸氧化分解的中间产物乙酰乙酸、β-羟基丁酸及丙酮三者的统称。酮体具有较强的合成酮体的酶系,但缺乏利用酮体的酶系,饥饿时酮体是包括脑在内的许多组织的燃料,可占脑能量来源的25%-75%,具有重要的生理意义。酮体合成酮体在肝细胞的线粒体中合成。合成原料为脂肪酸β-氧化产生的乙酰CoA.肝细
酮体的检测
酮体(ketone bodies)由乙酰乙酸、β-羟丁酸和丙酮组成。最主要的来源为游离脂肪酸在肝脏的氧化代谢产物。正常情况下,长链脂肪酸被肝脏摄取,重新酯化为甘油三酯贮存在肝脏内,或转变为极低密度脂蛋白再进入血浆。而在未控制的糖尿病,由于胰岛素缺乏,导致重新酯化作用减弱而脂解作用增强,使血浆中