放射性射线的主要应用
放射性射线的应用主要是: (l)射线探测。将γ射线透过样品,若样品中有砂眼或裂痕,则射线在该处的吸收就减小,因此在样品后面放上照相底片,显影后的底片上将留下相应的痕迹。另外,射线通过物质时都按照一定的规律被物质吸收或散射,这样就可测量物体的密度及厚度等。在石油勘探方面,应用γ射线等可研究地层的性质,求出泥质含量,区分岩性,测定岩层中的孔隙度,找出生油层、储油层。(2)在医疗上的应用。放射性射线可使癌肿的组织受到破坏,抑制癌肿的发展,利用它还可消毒杀菌、人体内部透视等。 (3)在农业上的应用。种子经过射线适当照射后,可刺激生长发育,使农作物提早成熟,增加产量,培育新品种。目前我国已开展推广稀土农用技术,并获得了很好的经济效益。(4)在化工和其他方面的应用。例如,应用辐射化学进行乳汁融合来生产黏合剂;将核辐射技术用于印染助剂。射线穿过物质时能使物质的分子电离,利用它可使空气电离,获得导电能力,从而消除有害的静电积......阅读全文
放射性射线的主要应用
放射性射线的应用主要是: (l)射线探测。将γ射线透过样品,若样品中有砂眼或裂痕,则射线在该处的吸收就减小,因此在样品后面放上照相底片,显影后的底片上将留下相应的痕迹。另外,射线通过物质时都按照一定的规律被物质吸收或散射,这样就可测量物体的密度及厚度等。在石油勘探方面,应用γ射线等可研究地层的性质,
关于放射性同位素的放射性射线的主要应用
(l)射线探测。将丫射线透过样品,若样品中有砂眼或裂痕,则射线在该处的吸收就减小,因此在样品后面放上照相底片,显影后的底片上将留下相应的痕迹。另外,射线通过物质时都按照一定的规律被物质吸收或散射,这样就可测量物体的密度及厚度等。在石油勘探方面,应用丫射线等可研究地层的性质,求出泥质含量,区分岩性
X-射线衍射技术的主要应用
物相分析物相分析是X射线衍射在金属中用得最多的方面,分定性分析和定量分析。前者把对材料测得的点阵平面间距及衍射强度与标准物相的衍射数据相比较,确定材料中存在的物相;后者则根据衍射花样的强度,确定材料中各相的含量。在研究性能和各相含量的关系和检查材料的成分配比及随后的处理规程是否合理等方面都得到广泛应
X-射线衍射技术的主要应用介绍
X 射线衍射技术已经成为最基本、最重要的一种结构测试手段,其主要应用主要有以下几个方面:物相分析物相分析是X射线衍射在金属中用得最多的方面,分定性分析和定量分析。前者把对材料测得的点阵平面间距及衍射强度与标准物相的衍射数据相比较,确定材料中存在的物相;后者则根据衍射花样的强度,确定材料中各相的含量。
X射线光电子能谱分析的主要应用
1 元素的定性分析。可以根据能谱图中出现的特征谱线的位置鉴定除H、He以外的所有元素。2 元素的定量分析。根据能谱图中光电子谱线强度(光电子峰的面积)反映原子的含量或相对浓度。3 固体表面分析。包括表面的化学组成或元素组成,原子价态,表面能态分布,测定表面电子的电子云分布和能级结构等。4 化合物的结
X射线衍射仪主要的应用有那几个方面
X射线衍射仪是利用衍射原理,准确测定物质的晶体结构,织构及应力,准确的进行物相分析,定性分析,定量分析。广泛应用于冶金,石油,化工,科研,航空航天,教学,材料生产等领域。 X射线衍射仪的形式多种多样,用途各异,但其基本构成很相似,主要部件包括4部分。 1、高稳定度X射线源提供测量所需的
X射线的应用
X射线诊断 X射线应用于医学诊断[6],主要依据X射线的穿透作用、差别吸收、感光作用和荧光作用。由于X射线穿过人体时,受到不同程度的吸收,如骨骼吸收的X射线量比肌肉吸收的量要多,那么通过人体后的X射线量就不一样,这样便携带了人体各部密度分布的信息,在荧光屏上或摄影胶片上引起的荧光作用或感光作用
X射线的应用
X射线诊断X射线应用于医学诊断,主要依据X射线的穿透作用、差别吸收、感光作用和荧光作用。由于X射线穿过人体时,受到不同程度的吸收,如骨骼吸收的X射线量比肌肉吸收的量要多,那么通过人体后的X射线量就不一样,这样便携带了人体各部密度分布的信息。这样在荧光屏上或摄影胶片上引起的荧光作用或感光作用的强弱就有
放射性元素的主要类型划分
根据放射性元素释放或吸收的粒子或射线,可将放射性衰变划分为以下几个类型:(1)α衰变:放射性元素自发地释放出α粒子的衰变过程叫α 衰变。α粒子质量数为4,由2个质子和2个中子组成,是原子序数为2的高速运动的氦原子。高速运动着的α 粒子流就是α 射线。经过α衰变形成的放射性元素与其母体相比质量数减4,
荧光X射线测厚仪的主要规格
1、X射线激发系统垂直上照式X射线光学系统空冷式微聚焦型X射线管,Be窗标准靶材:Rh靶;任选靶材:W、Mo、Ag等功率:50W(4-50kV,0-1.0mA)-标准75W(4-50kV,0-1.5mA)-任选X射线管功率可编程控制装备有安全防射线光闸 2、滤光片程控交换系统根据靶材,标准装备
X射线衍射的应用
X 射线衍射技术已经成为最基本、最重要的一种结构测试手段,其主要应用主要有以下几个方面: 物相分析 物相分析是X射线衍射在金属中用得最多的方面,分定性分析和定量分析。前者把对材料测得的点阵平面间距及衍射强度与标准物相的衍射数据相比较,确定材料中存在的物相;后者则根据衍射花样的强度,确定材料中
X射线管的应用
X射线管 在医学上用于诊断和治疗,在 工业技术方面用于材料的无损检测、结构分析、光谱分析和底片曝光等。X射线对人体有害,使用时须采取有效防护措施。
X射线的工业应用
X射线可激发荧光[8]、使气体电离、使感光乳胶感光,故X射线可用电离计、闪烁计数器和感光乳胶片等检测研究领域,晶体的点阵结构对X射线可产生显著的衍射作用,X射线衍射法已成为研究晶体结构、形貌和各种缺陷的重要手段
X射线诊断的应用
X射线应用于医学诊断,主要依据X射线的穿透作用、差别吸收、感光作用和荧光作用。由于X射线穿过人体时,受到不同程度的吸收,如骨骼吸收的X射线量比肌肉吸收的量要多,那么通过人体后的X射线量就不一样,这样便携带了人体各部密度分布的信息,在荧光屏上或摄影胶片上引起的荧光作用或感光作用的强弱就有较大差别,
芬兰X射线应力分析仪主要特点及应用范围
芬兰X射线应力分析仪可快速、轻松分析齿轮、轴承、轧辊、曲轴、凸轮轴、压力容器管道以及其它一些零部件在热处理、机加工、焊接、喷丸、滚压等处理过程中产生的残余应力。有效避免有害的残余应力对工件的抗疲劳强度和耐蚀性能的降低,延长工件使用寿命,避免造成重大事故。而有些零件引入有益的残余应力,如滚压、喷丸等可
放射性实验室的主要防护要求
一、对开放型放射性实验室的主要防护要求对开放型放射性实验室建筑的主要防护要求,应按GB 18871-2002的规定,这里着重对小规模第3类工作单位实验室的设计与装备在符合防护要求方面作简要介绍。放射性实验室应该具有特殊的设计及装备。为确保充分净化,墙壁、天花板、门窗都必须平滑不应留有易于储积尘埃的角
放射性检测仪的主要来源
对环境造成放射性污染的人工污染源除了医用射线源、核试验产生的放射性沉降以及核能工业的各种放射性废物外,还包括设有辐射源的各种装置与设备等。医用射线一般占人工污染源的94%,占所有射线总量的30%。因此,对医用射线污染源的监控是放射性污染源监控的主体。核能工业包括核燃料的开采、反应堆的运行和辐照后
放射性核素检查的应用
在中国于1958年前后逐渐建立起这项技术,对临床诊断确有价值的项目已达百余种,放射性核素检查需要良好的放射性药品、竞争放射分析试剂药盒和医用核仪器。放射性核素检查主要分为三大类。
放射性示踪物的应用
根据实验目的和周期,选择半衰期、辐射类型、能量、比活度、纯度和低毒性的合适核素作示踪原子,常用的有:14C,3H,35S,32P,125I,75Se,57Co等。以它们制备许多放射性标记化合物,其中14C标记化合物约有600种,3H标记化合物300余种,125I和131I标记化合物100多种。
放射性元素的应用介绍
放射性同位素技术已广泛应用于国民经济的许多领域,在工业、农业、医学、资源环境、军事科研诸多领域的应用已获得了显著的经济效益、社会效益、环境效益,也是核能利用的重要方面之一。 示踪原子将一种稳定的化学元素和它的具有放射性的同位素混合在一起,当它们参与各种系统的运动和变化时,由于放射性同位素能发出射线,
β射线扬尘检测仪的主要部件
1. 设备主机箱:防尘、防风、防雨、防晒; 2. 颗粒物采样头:物理切割器+加热除湿器+水汽冷凝器 3. 工业主控板+7寸触摸屏:设备系统运行及操作 4. 颗粒物传感器:光散射法PM10传感器 5. 温湿度传感器:探测环境温湿度 6. 风速风向传感器:气象数据监测 7. 数据传输模块
X射线衍射仪的主要参数
三个物理量:从图中可以看出,衍射谱上可以直接得到的有三个物理量,即衍射峰位置(2θ)、衍射峰强度(I)及衍射峰形状(f(x))。粉末衍射可解决的任何问题或可求得的任何结构参数一般都是以这三个物理量为基础的。主要技术参数:一台好的仪器应能得到准确(测得的数值与其真值相符)并精确(测量重复性好)的2θ、
X射线谱仪的应用
我国“嫦娥一号”探月卫星的一个有效载荷,它可探测月表元素受太阳X射线或宇宙射线激发产生的X射线荧光,并能对太阳X射线辐射进行监测,通过数据反演法可获得月表主要元素的含量和分布,以确定月表岩石类型和资源分布,并为月球探测和检验月球形成与演化模型提供重要信息。 一些天文卫星上都会应用X射线探测器。
X射线衍射仪的应用
油田录井Olympus便携式X 射线衍射仪BTX可能直接分析出岩石的矿物组成及相对含量,并形成了定性、定量的岩性识别方法,为录井随钻岩性快速识别、建立地质剖面提供了技术保障。每种矿物都具有其特定的X 射线衍射图谱,样品中某种矿物含量与其衍射峰和强度成正相关关系。在混合物中,一种物质成分的衍射图谱与其
x射线衍射仪的应用
油田录井 Olympus便携式X 射线衍射仪BTX可能直接分析出岩石的矿物组成及相对含量,并形成了定性、定量的岩性识别方法,为录井随钻岩性快速识别、建立地质剖面提供了技术保障。 每种矿物都具有其特定的X 射线衍射图谱,样品中某种矿物含量与其衍射峰和强度成正相关关系。在混合物中,一种物质成分的
x射线衍射仪的应用
油田录井 Olympus便携式X 射线衍射仪BTX可能直接分析出岩石的矿物组成及相对含量,并形成了定性、定量的岩性识别方法,为录井随钻岩性快速识别、建立地质剖面提供了技术保障。 每种矿物都具有其特定的X 射线衍射图谱,样品中某种矿物含量与其衍射峰和强度成正相关关系。在混合物中,一种物质成分的
X射线衍射的应用介绍
X 射线衍射技术已经成为最基本、最重要的一种结构测试手段,其主要应用主要有以下几个方面:物相分析物相分析是X射线衍射在金属中用得最多的方面,分定性分析和定量分析。前者把对材料测得的点阵平面间距及衍射强度与标准物相的衍射数据相比较,确定材料中存在的物相;后者则根据衍射花样的强度,确定材料中各相的含量。
X射线绕射法的应用
X 射线衍射技术已经成为最基本、最重要的一种结构测试手段,其主要应用主要有以下几个方面: 物相分析 物相分析是X射线绕射在金属中用得最多的方面,分定性分析和定量分析。前者把对材料测得的点阵平面间距及衍射强度与标准物相的衍射数据相比较,确定材料中存在的物相;后者则根据衍射花样的强度,确定材料中
X射线衍射仪的应用
每种矿物都具有其特定的X 射线衍射图谱,样品中某种矿物含量与其衍射峰和强度成正相关关系。在混合物中,一种物质成分的衍射图谱与其他物质成分的存在与否无关,这就是X 射线衍射做相定量分析的基础。X 射线衍射是晶体的“指纹”,不同的物质具有不同的X 射线衍射特征峰值(点阵类型、晶胞大小、晶胞中原子或分子的
X射线的诞生及应用
1895年11月,德国物理学家伦琴在进行阴极射线的实验中,发现射线管中发出了某种未知的射线。由于当时对这种射线的本质属性了解甚少,所以他将其称之为X射线。1901年第一届诺贝尔奖颁发,伦琴就因这一发现而获得了这一年的物理学奖,X射线也由此被称为伦琴射线。伦琴的发现为之后的科学家开辟了一条探测X射线的