Rf基因对细胞质雄性不育相关基因的作用
Rf基因可对 CMS 基因转录本的稳定性、转录后加工、翻译及翻译后加工、甚而基因的结构产生影响。对 CMS 小麦(T.timopheevi)的研究表明,CMS 相关片段 orf256 与线粒体基因 coxI 形成嵌合基因 orf256/coxI共转录,在 CMS 系中转录起始点位于 orf256 的5"非翻译区,orf256 完整转录能编码 Mr为7000的蛋白质,其结合于线粒体膜上,直接影响花粉育性。而通过杂交引入 Rf 基因后,嵌合基因的转录本变小,且起始点位于 orf256 编码区内不能翻译形成蛋白质。细胞质来源于 1s1112c 的 CMS 高梁在其线粒体上的不育相关片段 orf107 编码 Mr为11800的蛋白质在线粒体内大量积累,而在杂交引入 Rf 基因后 orfl07 的转录本被加工成小片段,从而无全长转录本产物的存在,育性得以恢复。Rf 基因对 CMS 相关基因转录后加工的影响在胞质源于 Chin......阅读全文
Rf-基因对-细胞质雄性不育相关基因的作用
Rf基因可对 CMS 基因转录本的稳定性、转录后加工、翻译及翻译后加工、甚而基因的结构产生影响。对 CMS 小麦(T.timopheevi)的研究表明,CMS 相关片段 orf256 与线粒体基因 coxI 形成嵌合基因 orf256/coxI共转录,在 CMS 系中转录起始点位于 orf256
线粒体嵌合基因调控棉花细胞质雄性不育的作用机制
近日,中国农业科学院棉花研究所棉花高产育种创新团队揭示了线粒体嵌合基因orf610a通过破坏ATP合酶组装进而导致棉花不育系花粉败育的作用机制。相关研究成果发表在《植物生物技术杂志(Plant Biotechnology Journal)》上。 哈克尼西棉细胞质雄性不育系在不同环境条件下均表现
细胞质雄性不育与叶绿体基因组
CMS 与叶绿体的关系还存在很大的争议。相对于植物线粒体而言,叶绿体基因组较为保守也较小(120~160 kb),因此对它的认识要比对线粒体深入的多。研究发现植物叶绿体一般分为4个区:两个反向重复区,大单拷贝区和小单拷贝区。已有多种植物叶绿体的物理图谱被构建。对高粱的 CMS 系及相应保持系的叶绿体
细胞质雄性不育与线粒体基因组
根据研究,线粒体基因组的变异重组与 CMS 的关系最为密切。通过对不同材料的 CMS 系和保持系线粒体 DNA 的 RFLP、RAPD、AFLP 等多态性分析表明,CMS 系和保持系在线粒体基因组结构上具有显著差异。这可能与植物线粒体基因组自身的特点有关。与动物和真菌的线粒体基因组比起来,植物线粒体
细胞质雄性不育与核基因组
对胞质遗传物质的研究无疑加深了人们对 CMS 现象分子机制的认识,但是 CMS 是一种核质互作的结果,因此核基因组在 CMS 发生过程的作用是不容忽视的。研究表明在核基因组中可能存在育性恢复(restorer of fertility,Rf)基因。在 Rf 基因存在下,与 CMS 相关的线粒体等胞质
细胞质基因相关概念
染色体外基因:也叫细胞质基因,是细胞器和细胞质颗粒中的遗传物质统称。质粒、卡巴粒、叶绿体基因、线粒体基因等。质粒:原核、细菌、小环DNA。松弛型和严紧型2类。线粒体基因:mtDNA,线状、环状,能单独复制,同时受核基因控制。哺乳动物:无内含子,有重叠基因突变率高。叶绿体基因:ctDNA,环状,可自主
细胞质对核基因作用的调节
1、细胞质对基因载体—染色体的调节植物雄性不育的遗传受精的细胞质中的内含物的分布(色素、卵黄粒、线粒体等)是不均匀的,对染色体的影响也不一样。如小麦瘿蚊的个体发育中,瘿蚊卵跟果蝇相似,其卵的后端含有一种特殊的细胞质—极细胞质,在极细胞质区域的核内,保持了全部40条染色体,以后分化为生殖细胞。但位于其
细胞质基因的定义
细胞质基因:线粒体、叶绿体中的DNA上和细胞质粒上的基因。
细胞质基因受核基因的控制实例
1、玉米埃型条斑的遗传:玉米第7染色体上有一个条纹基因ij,当起处于隐性纯合时(ijij),能引起质体突变率增加,使正常的质体突变为败育的质体,不能全部形成叶绿素,表现出白色和绿色相间的条斑性状的植株或是白化苗不能成活。当条斑为母本与正常株IjIj为父本杂交时,其F1(Ijij)表型由种:绿色苗、条
等位基因的特异对基因诊断的作用
寡核苷酸探针诊断法当基因的突变部位和性质已完全明了时,可以合成等基因特异的寡核苷酸探针(allele-specific oligonucleotide,ASO)用同位素或非同位素标记进行诊断。探针通常为长20bp左右的核苷酸。用于探测点突变时一般需要合成两种探针,一种与正常基因序列完全一致,能与
细胞质雄性不育的概念和应用
细胞质雄性不育(cytoplasmic male sterility,CMS)是广泛存在于高等植物中的一种自然现象,表现为母体遗传、花粉败育和雌蕊正常。可被显性核恢复基因恢复育性。迄今已在150多种植物中发现了 CMS。利用 CMS 培育不育系进行杂交制种,已成为国际制种业的主要趋势,其可免去人工去
小麦雄性不育基因克隆成功
山东农业大学付道林教授领衔的科研团队成功克隆出太谷核不育基因,标志着我国在太谷核不育小麦研究上取得重大突破,为将来实现小麦等作物的杂交制种创造了条件。近日,国际著名学术期刊《自然·通讯》以《小麦Ms2基因编码的稀有蛋白导致禾本科植物的雄性不育》为题发表了该研究成果。 普通小麦属于自花授粉作物,
杂交稻野败型细胞质雄性不育分子机理阐明
华南农业大学生命科学学院、亚热带农业生物资源保护与利用国家重点实验室刘耀光课题组经过10年艰苦钻研,成功克隆出三系杂交稻广泛利用的野败型细胞质雄性不育基因,并阐明了不育发生的分子机理。研究论文《水稻线粒体与细胞核有害互作产生细胞质雄性不育》17日在线发表于《自然—遗传学》。
植物雄性不育的遗传的类型
1、细胞质雄性不育(质不育型):由细胞质基因控制,一般不受父本基因型影响。应用价值不大。如:质不育型♀×♂正常品系↓F1 全部雄性不育♀×♂正常品系↓多代全部雄性不育2、细胞核雄性不育:核基因控制的雄性不育,有显性核不育和隐性核不育,遗传方式符合孟德尔遗传规律。根据对光的反应有分2种:(1)不受光温
细胞质雄性不育与植物激素研究
生长激素如赤霉素和多胺有利于雄性器官的发育,CMS 水稻不育株幼穗或花药中赤霉素含量显著低于相应可育株,此外,外施赤霉素能促进某些植物雄性育性表达。多胺亦是一种重要的促雄激素,在 CMS 玉米中,结合多胺的含量极低,在 CMS 水稻中也发现了类似的现象,进一步的研究表明用多胺处理 CMS 水稻、油菜
细胞质雄性不育与营养物质
对影响 CMS 花发育的营养物质主要集中在一些可溶性蛋白质、游离氨基酸、碳水化合物方面。萝卜 CMS 系与保持系的物质代谢研究表明,在不育性的花蕾中可溶性蛋白质、多糖、淀粉及游离脯氨酸含量均低于保持系。花蕾中多糖和淀粉含量低会减缓能量代谢致使细胞产能不足,同时,使花中各部分发育受阻造成败育。游离脯氨
细胞质雄性不育分子机理和油菜野芥不育系统的应用
日前,油料所油料作物逆境生物学和抗性改良团队鉴定了一个新的异源细胞质雄性不育基因orf346,并解析了该基因调控花粉败育分子机制,对阐明十字花科细胞质雄性不育分子机理和促进油菜野芥不育系统的育种应用具有重要意义。相关研究成果发表在作物学权威期刊《作物杂志(The Crop Journal)》上。
PNAS:利用核雄性不育基因构建水稻雄性不育系
核雄性不育在开花植物中是很常见的,但是其在杂交育种和种子生产中的应用,还是很有限的,因为无法繁育一个纯的雄性不育系,用于商业杂交种子生产。在最新一期的《PNAS》杂志发表的一项研究中,来自首都师范大学、深圳市作物分子设计育种研究院和北京大学的研究人员,鉴定了一个对于孢子体雄性不育至关重要的水稻核
细胞质对X染色体上基因的调节作用
哺乳动物性染色体♀XX,♂XY。X染色体上含有很多与性别无关的伴性基因。按理说,这样的基因♀性有两套,♂性只有1套,♀性基因产物也应是♂性基因产物地倍,可事实上并不是这样,二者产物基本相等。因为♀性的两个X染色体,在间期核中表现“异固缩现象”,即属于异染色质,染色深,处于失活状态。至于哪个细胞中哪条
细胞质对基因载体—染色体的调节作用介绍
受精的细胞质中的内含物的分布(色素、卵黄粒、线粒体等)是不均匀的,对染色体的影响也不一样。如小麦瘿蚊的个体发育中,瘿蚊卵跟果蝇相似,其卵的后端含有一种特殊的细胞质—极细胞质,在极细胞质区域的核内,保持了全部40条染色体,以后分化为生殖细胞。但位于其他细胞质区域的核丢失了32条染色体,只保留了8条,将
杂交技术的实际用途
美国杂交水稻ZL文献主要来自德克萨斯州、加州、中国大陆等地区。例如,RingAround产品公司、RiceTec公司、NorCal野生稻公司、KenFoster、BarryL.Tillman、EugenioS.Sarreal等提交了相关ZL申请。中国国家种子公司也提交了几篇申请。在中国国家知识产权局
细胞质基因的特点及原因
(1)特点①母系遗传:不论正交还是反交,Fl性状总是受母本(卵细胞)细胞质基因控制;②杂交后代不出现一定的分离比。(2)原因①受精卵中的细胞质几乎全部来自卵细胞;②减数分裂时,细胞质中的遗传物质随机不均等分配。
细胞质基因的特点及原因
(1)特点①母系遗传:不论正交还是反交,Fl性状总是受母本(卵细胞)细胞质基因控制;②杂交后代不出现一定的分离比。(2)原因①受精卵中的细胞质几乎全部来自卵细胞;②减数分裂时,细胞质中的遗传物质随机不均等分配。
细胞质基因组的概念
细胞质基因组(plasmon)是细胞质中基因的总称,细胞质基因是细胞质中存在的支配遗传性状的基因。细胞质中存在的一个个基因。
细胞质基因的特点及原因
(1)特点①母系遗传:不论正交还是反交,Fl性状总是受母本(卵细胞)细胞质基因控制;②杂交后代不出现一定的分离比。(2)原因①受精卵中的细胞质几乎全部来自卵细胞;②减数分裂时,细胞质中的遗传物质随机不均等分配。
细胞质基因的物质基础
物质基础细胞质基因:线粒体、叶绿体中的DNA上和细胞质粒上的基因。细胞质遗传现象表明,细胞质内具有控制某些性状的遗传物质——细胞质基因(简称质基因)。但是,科学家用电子显微镜观察,在细胞质内并没有找到像染色体一样的结构。1962年,科学家里斯(Ris)和普兰特(Plant)等用电子显微镜观察衣藻、玉
细胞质雄性不育与酶活性变化研究
同工酶分析表明在不同的材料中过氧化物酶、细胞色素氧化酶、超氧化物歧化酶、谷氨酸脱氢酶等在不育系和保持系之间存在酶活上的差异。对6种具有应用前景的 CMS 小麦和其保持系中国春小麦和华麦8号进行的谷胱甘肽过氧化物酶的活性比较表明,CMS 小麦远低于其保持系中国春小麦和华麦8号。耿三省 等对 CMS 辣
转基因技术对农业发展的作用
1)减轻病虫害危害,改善农业生态环境。全球转基因技术的研发与应用表明,抗虫和抗除草剂等转基因作物的种植不仅在提高农作物产量方面成效显著,而且在改善农业生态环境方面也显示出巨大优势。培育抗病虫、抗除草剂、抗旱、耐盐碱、养分高效利用等转基因新品种,将显著减少农药、化肥和水的使用,有利于缓解环境污染,改善
“一步法”创制芸薹属作物细胞质雄性不育系
近日,中国农业科学院蔬菜花卉研究所甘蓝类蔬菜遗传育种创新团队开发了以父系单倍体诱导系介导细胞质替换,实现快速创制细胞质雄性不育系的新方法。相关研究结果发表在《自然—植物》(Nature Plants)上。青花菜不育系及其保持系包括甘蓝类蔬菜在内的多种作物具有较强的杂种优势,其杂交制种需要使细胞质雄性
细胞质基因的普通遗传现象分析
(一)高等植物叶绿体的遗传有几种高等植物有绿白斑植株,如紫茉莉、藏报春、加荆介等。1901年柯伦斯在紫茉莉中发现有一种花斑植株,着生绿色,白色和花斑三种枝条。在显微镜下观察,绿叶和花斑叶的绿色部分其细胞中均含正常的叶绿体,而白色或花斑叶的白色部分,细胞中缺乏正常的叶绿体,是一些败育的无色颗粒。他分别