长读测序发现高达20%的果蝇基因来自细菌
科学家芭芭拉·麦克林托克在20世纪40年代首次发现了“跳跃基因”,即那些可以在其他物种基因组内移动或转移到其他物种基因组中的基因。然而,研究人员继续发现它们在进化和健康中的重要性。在UMSOM和IGS的微生物学和免疫学教授Julie Dunning Hotopp博士的带领下,IGS的研究人员使用了新的基因长读测序技术,展示了8000年前来自细菌沃尔巴克氏体Wolbachia的基因如何融入昆虫基因组。研究人员表示,他们的发现表明,与达尔文或孟德尔豌豆不同,基因变异并不总是小的、递增的和可预测的。在过去,研究人员必须将DNA分解成短片段,以便对其进行测序。然后,他们需要像拼图一样将它们组合起来,来观察一个基因或DNA片段。然而,长读测序技术允许对超过10万个DNA字母进行测序,将一个100万块的拼图再变成一个简单的拼图。现在有了长读测序,研究人员验证了整合的细菌基因和宿主果蝇基因组之间的连接。为了确定细菌基因是否具有功能性,而不仅仅......阅读全文
果蝇白眼突变基因的克隆
【实验目的】掌握T克隆的原理和方法。了解质粒提取的原理和方法。【实验原理】外源DNA与载体分子的连接就是DNA重组,这样重新组合的DNA叫做重组体或重组子。重组的DNA分子是在DNA 连接酶的作用下,有Mg2+ 、ATP存在的连接缓冲系统中,将载体分子与外源DNA分子进行连接。Taq DNA
Science:“跳跃基因”导致果蝇性格各异
日前,美国麻省大学医学院(University of Massachusetts Medical School)和牛津大学(University of Oxford)等机构的一项最新研究显示,果蝇(Drosophila)可能比我们想象的具有更多的个性性格。所有一切或许都可归因于神经
美发现新型果蝇基因测序法
美国斯托瓦斯医学研究所开发出了一种名为“全基因组测序法”的果蝇突变基因测序法。研究人员称,在寻找果蝇突变基因上该方法能大幅减少时间和精力。相关研究发表在5月出版的《遗传学》杂志上。 据介绍,研究人员是通过测定果蝇突变后所产生的复合乙基甲(EMS)来绘制突变果蝇的基因图谱的。该结果将有助于对
基因缺陷导致果蝇运动障碍
为此,研究人员对该属果蝇进行了研究果蝇他们对其进行了基因改造,使其无法形成克雷德。在这些动物中,心率以一种特有的方式减慢——这是能量缺乏的标志。他们还表现出严重的运动障碍。细胞的发电厂,线粒体,负责提供能量。它们的功能失调会导致负责人类运动功能的神经细胞死亡。这种临床症状被称为帕金森病。LIMES研
新型探针!轻松检测果蝇的基因编码
在国家自然科学基金面上项目(项目编号31671118)等的资助下,北京大学李毓龙研究组在神经递质荧光探针的开发方面取得重要进展,先后报道了可基因编码的乙酰胆碱荧光探针和多巴胺荧光探针的研究成果。其中乙酰胆碱荧光探针以“A genetically encoded fluorescent acety
环境对果蝇基因表达的效应实验
实验方法原理 实验材料 弯翅果蝇试剂、试剂盒 果蝇培养基 乙醚仪器、耗材 恒温培养箱 立体解剖镜 培养瓶及麻醉瓶实验步骤 1.从保种的弯翅果蝇(基因型为cu/cu)培养瓶中建立3种培养体系,雌蝇不要求是处女蝇。在培养瓶上贴上20℃、25℃、28℃标签,初始培养温度均为25℃,一直培养到化蛹(这样可以
环境对果蝇基因表达的效应实验
表型的许多方面都受到生物体遗传组成和其生存环境的影响,因此可以说表型是基因型与环境相互作用的产物。果蝇卷曲翅基因的表达常受到环境的修饰,通过观察该基因在不同环境下的表达情况,即可显示环境对基因表达的影响。卷曲翅基因(cu)对温度敏感,纯合体(cu/cu)果蝇在高温下培养时翅膀顶端弯曲(图7-1),但
最新果蝇基因组测序,展现奇妙的进化
对真核生物进行全基因组测序在二十世纪还是一项了不起的大工程,直到2000年末人们还只完成了四项这样的研究。不过自那以后,测序技术的飞速进步使全基因组测序对于许多研究团队来说触手可及,现在每隔不久就会涌现出一项新的测序成果。日前,维也纳兽医大学Christian Schlötterer研究组的
基因驱动的威力,人造8个果蝇物种的诞生!
加州大学圣地亚哥分校的科学家们利用基于CRISPR的技术修改了果蝇的基因组,创造了8个生殖分离的物种。 基于CRISPR的技术为造福人类健康和安全提供了巨大的潜力,从根除疾病到强化食品供应。例如,基于CRISPR的基因驱动被设计成通过目标群体传播特定特征,目前正在开发这种基因驱动,以阻止疟疾和
Plos-Genetics:靶基因Windpipe对果蝇肠道稳态调控机制
肠道稳态维持是通过肠干细胞的增殖分化实现的。由于外界病原微生物感染,饮食等环境压力,肠道上皮细胞不断受损,肠干细胞通过自我更新、增殖和分化来维持肠道上皮的完整性。果蝇中肠系统是研究干细胞和组织稳态的重要模型。其稳态受到多种信号通路的综合调控,包括Notch、JAK/STAT、Wnt等。然而,这些
长读测序发现高达20%的果蝇基因来自细菌
科学家芭芭拉·麦克林托克在20世纪40年代首次发现了“跳跃基因”,即那些可以在其他物种基因组内移动或转移到其他物种基因组中的基因。然而,研究人员继续发现它们在进化和健康中的重要性。在UMSOM和IGS的微生物学和免疫学教授Julie Dunning Hotopp博士的带领下,IGS的研究人员使用了新
科学家利用基因技术抑制果蝇性欲防治害虫
果蝇 据美国《国家地理》网站近日报道,科学家已经发现使用基因技术抑制果蝇性欲的方法,他们希望这一研究成果可以帮助人们采用环保的方式进行害虫防治。 据悉,这个国际研究小组由美国堪萨斯州立大学(Kansas State University)的Yoonseong Park教授带领
果蝇实验技术
一、实验原理 果蝇(fruit fly)是双翅目(Diptera)昆虫,属果蝇属(genus Drosophila),约有2500个种。通常用作遗传学实验材料的是黑腹果蝇(Drosophila melanogaster)。果蝇优点: 1. 饲养容易。在常温下,以玉米粉等作饲料就可以生长,繁殖。 2.
奥地利研究发现使果蝇适应不同温度的基因
果蝇原产于热带或亚热带地区,但目前世界上许多地区都能发现它们的踪影。奥地利一项最新研究发现,果蝇身上携带的一种基因或许是它们能够适应不同温度环境的原因。 奥地利维也纳兽医大学群体遗传学研究所所长克里斯蒂安·施洛特雷尔领导的研究小组4月 27日发表公报说,果蝇种类繁多,它们生存的空间早已
科学家发现可促进睡眠需求的果蝇睡眠基因
近日,一项刊登在国际杂志eLife上的研究报道中,来自宾夕法尼亚大学的研究人员通过研究报道了一种新型蛋白质,该蛋白质参与了果蝇睡眠的自我调节过程之中。 文章中,研究者对果蝇的突变体进行筛选来得到“短睡眠”的果蝇个体,结果发现了一个,研究者将其称之为“红眼”(redeye),红眼果蝇表现出的
果蝇数量性状实验
【实验目的】1、以果蝇(Drosophila melanogaster)腹片着生的小刚毛为对象,研究数量性状遗传的特点。2、学习估算遗传(heritability)【实验原理】在生物中凡是可数、可度、可衡等并可用数字形式描述的性状,称数量性状(quantitative character)。数量性状
果蝇数量性状实验
【实验目的】1、以果蝇(Drosophila melanogaster)腹片着生的小刚毛为对象,研究数量性状遗传的特点。2、学习估算遗传(heritability)【实验原理】在生物中凡是可数、可度、可衡等并可用数字形式描述的性状,称数量性状(quantitative character)。数量性状
果蝇数量性状实验
【实验目的】1、以果蝇(Drosophila melanogaster)腹片着生的小刚毛为对象,研究数量性状遗传的特点。2、学习估算遗传(heritability)【实验原理】在生物中凡是可数、可度、可衡等并可用数字形式描述的性状,称数量性状(quantitative character)。数量性状
果蝇数量性状实验
【实验目的】 1、以果蝇(Drosophila melanogaster)腹片着生的小刚毛为对象,研究数量性状遗传的特点。 2、学习估算遗传(heritability)【实验原理】 在生物中凡是可数、可度、可衡等并可用数字形式描述的性状,称数量性状(quantitative character)
果蝇数量性状实验
【实验目的】1、以果蝇(Drosophila melanogaster)腹片着生的小刚毛为对象,研究数量性状遗传的特点。2、学习估算遗传(heritability)【实验原理】在生物中凡是可数、可度、可衡等并可用数字形式描述的性状,称数量性状(quantitative character)。数量性状
果蝇做菜你敢吃吗?以色列推出果蝇蛋白粉
蛋白质是最重要也是最贵的营养物质之一。以色列一家初创企业表示,果蝇幼虫可以生产出大量既经济又安全的蛋白质。 从营养学的角度来看,果蝇幼虫富含蛋白质、钙、铁、镁等营养要素,而且不含胆固醇,是一种非常健康的食材。另外果蝇还具有培养周期短、速度快的特点,与其他昆虫相比,果蝇的饲养成本也十分低廉。
邵逸夫奖获得者借果蝇基因破解生物钟奥秘
图:第十届邵逸夫奖生命科学与医学奖获得者。左起:迈克尔·杨(Michael W Young)、杰弗理·霍尔(Jeffrey C Hall)、迈克尔·罗斯巴殊(Michael Rosbash)。 据香港《大公报》报道,所有生物都有自己的作息规律:人类晚上出现倦意、猫头鹰昼伏夜出、花
动物所揭示靶基因Windpipe对果蝇肠道稳态的调控机制
肠道稳态维持是通过肠干细胞的增殖分化实现的。由于外界病原微生物感染,饮食等环境压力,肠道上皮细胞不断受损,肠干细胞通过自我更新、增殖和分化来维持肠道上皮的完整性。果蝇中肠系统是研究干细胞和组织稳态的重要模型。其稳态受到多种信号通路的综合调控,包括Notch、JAK/STAT、Wnt等。然而,这些
Cell子刊:高糖饮食引起基因重编程-让果蝇短寿
生物通报道:根据伦敦大学学院(UCL)领导的一个研究团队,拥有高糖饮食史的果蝇,即使在改善饮食后,它们的寿命也更短。这是因为不健康的饮食习惯,驱动基因表达的长期重编程。 这项研究结果发表在1月10日的《Cell Reports》,发现一个基因——FOXO的作用,在生命早期摄取高糖饮食的果蝇中,
美国成功完成地中海果蝇的全基因组测序
美国农业部农业研究局(ARS)近日宣布,其组织的一个由来自全球25个研究机构的64位科学家组成的研究团队成功完成了地中海果蝇的全基因组测序。地中海果蝇对全球260余种水果、蔬菜和坚果形成危害,每年因其形成的农产品出口制裁、市场准入限制和其它成本增加等因素,对全球农作物造成数十亿美元的直接损失。
在果蝇体内发现了最大的细菌到动物的基因转移
果蝇的基因组不仅仅是由果蝇的DNA组成的——至少对一种果蝇来说是这样。马里兰大学医学院(UMSOM)基因组科学研究所(IGS)的一项新研究表明,一种果蝇含有一种细菌的全部基因组,使这一发现成为迄今为止发现的最大的细菌向动物遗传物质转移。这项新研究还阐明了这是如何发生的。在UMSOM和IGS的微生物学
科学家首次通过基因工程培育出孤雌生殖果蝇
原文地址:http://news.sciencenet.cn/htmlnews/2023/7/505743.shtm
果蝇也会“触景伤身”
原文地址:http://news.sciencenet.cn/htmlnews/2023/6/502849.shtm
果蝇的伴性遗传
实验概要1、正确认识伴性遗传的正、反交的差别,进一步认识伴性遗传的特点。 2、记录杂交结果,掌握统计处理方法。实验原理位于性染色体上的基因叫作伴性基因,其遗传方式与位于常染色体上的基因有一定差别,它在亲代与子代之间的传递方式与雌雄性别有关,伴性基因的这种遗传方式称为伴性遗传(sex-linked
果蝇体内发现瘦素
当谈到脂肪,果蝇比你想象的更像人类。 研究人员已经发现,这种昆虫能够大量炮制一种名为瘦素的激素——类似的激素在人体中能够有助于控制食欲和新陈代谢。 瘦素的发现在研究人员中引起了强烈的兴趣——在此之前,他们认为只有脊椎动物才能够分泌瘦素。这一发现为更好地了解瘦素的功效敞开