长读测序发现高达20%的果蝇基因来自细菌
科学家芭芭拉·麦克林托克在20世纪40年代首次发现了“跳跃基因”,即那些可以在其他物种基因组内移动或转移到其他物种基因组中的基因。然而,研究人员继续发现它们在进化和健康中的重要性。在UMSOM和IGS的微生物学和免疫学教授Julie Dunning Hotopp博士的带领下,IGS的研究人员使用了新的基因长读测序技术,展示了8000年前来自细菌沃尔巴克氏体Wolbachia的基因如何融入昆虫基因组。研究人员表示,他们的发现表明,与达尔文或孟德尔豌豆不同,基因变异并不总是小的、递增的和可预测的。在过去,研究人员必须将DNA分解成短片段,以便对其进行测序。然后,他们需要像拼图一样将它们组合起来,来观察一个基因或DNA片段。然而,长读测序技术允许对超过10万个DNA字母进行测序,将一个100万块的拼图再变成一个简单的拼图。现在有了长读测序,研究人员验证了整合的细菌基因和宿主果蝇基因组之间的连接。为了确定细菌基因是否具有功能性,而不仅仅......阅读全文
果蝇唾腺染色体
实验三 果蝇唾腺染色体【实验目的】1.练习取出果蝇幼虫的唾腺和制作唾腺染色体标本的方法与技术。2.观察和识别多线染色体的特征:a.巨大,多线;b.染色体配对,染色体只有体细胞的半数(n);c. 染色体含异染色质多的着丝粒部分互相靠 拢 ,形成染色中心(chromo center) ;d.横纹有深、浅
首个果蝇细胞衰老图谱公布
了解身体如何衰老是一个重要的研究领域。美国贝勒医学院、斯坦福大学等机构研究人员在《科学》杂志上发表了首个果蝇细胞衰老图谱(AFCA),详细描述了果蝇中163种不同细胞类型的衰老过程。 分析表明,体内不同细胞的年龄不同,每种细胞类型的衰老过程都遵循特定的模式。AFCA为衰老研究提供了宝贵的资源,
小规模快速制备果蝇RNA
小规模快速制备果蝇RNA 试剂、试剂盒 Northern 样品缓冲液 lmol L 乙酸
Cell:果蝇如何趋利避害?
有时候,冰箱里的水果烂了。一打开冰箱门,腐烂气味扑面而来,令人作呕。这种厌恶的感觉并非人类特有,果蝇也有。研究人员近日在《Cell》杂志上发表文章,将果蝇中的这种反应归结为一个名为土臭素(geosmin)的分子。 果蝇喜欢在醋、酒、发酵的水果上生长和产卵。但是当水果开始腐烂时,链球菌和青霉
日发现果蝇避免不育机制
日本研究人员日前报告说,他们发现在雄性果蝇体内存在一种调节机制,可以通过有效增加精原干细胞来避免不育。这一发现有望给不育病理和疗法研究提供新思路。 日本基础生物学研究所教授小林悟领导的研究小组发现,在雄性果蝇精巢前端的精原干细胞微环境中,存在一种特殊细胞,只有与它们邻近的原
果蝇的伴性遗传实验
实验方法原理 果蝇的红眼与白眼是一对由性染色体上的基因控制的相对性状。用红眼雌果蝇与白眼雄果蝇交配,F1代雌雄均为红眼果蝇,F1代相互交配,F2代则雌性均为红眼,雄性红眼:白眼=1:1;相反用白眼雌果蝇与红眼雄果蝇交配,F1代雌性均为红眼,,雄性都是白眼,F1相互交配得F2代,雌蝇红眼与白眼比例为1
果蝇发育调控可视化
生命科学最大魅力是纷繁复杂的生物形式,而其中极具挑战的科题之一是多细胞生物的发育调控。在多细胞个体遗传调控研究中,科学家经常使用一种看似不起眼但又被广泛使用的模式动物——果蝇 (Drosophila ontogenesis) [1]。遗传级联遗传调控指导受精卵单细胞发育成复杂多细胞生物体。虽然每个细
《自然》:果蝇也爱碳酸饮料
盘旋在厨房的果蝇可能更容易被正在变成棕色的香蕉所吸引,或它还想喝上你的一口汽水。在8月30日的《自然》杂志上,来自美国加州大学伯克力分校的研究人员发表的文章报道说,果蝇能侦测并被溶解在水里的二氧化碳的味道所吸引。果蝇能尝二氧化碳的能力可能帮助它寻找更有营养的食物。这项研究由美国NIH隶属的失聪和其他
人工复眼功能堪比果蝇
对于许多动物而言,复眼为它们提供了欣赏外界的窗口,虽然复眼的分辨率低于脊椎动物的单透镜眼的分辨率,但它却为动物提供了更加广阔的视野。近日,科研人员公布了一种微型人工复眼的原型,它类似于果蝇和其他节肢动物的复眼。 复眼能让昆虫和其他节肢动物同时追踪多个方向的迅速运动,而由其产生的失真和球面像
癌症、果蝇与EGFR的关系
癌症和果蝇的腿有什么共同之处?你可能一时半会儿回答不上来。答案是它们都受到同一种分子的调控。这种蛋白质几乎存在于地球上的每一种生物中,它就是表皮生长因子受体(EGFR)。 如今,哥伦比亚大学的神经科学家确定了EGFR在动物胚胎发育过程中的各种作用,从四肢发育到癌症增殖。这项新成果发表在《PLO
果蝇:-人类的远房“小表弟”
当我们辛勤忙碌了一整天回到家中,在厨房准备开火,却看见几只个头矮小的果蝇们也在忙碌着觅食,它们已经在我们的厨房组建家庭,结婚生子。尽管你看到厨房里美味的香蕉上沾满了果蝇们的足迹,会心生厌烦,非常想杀之而后快,可你不知道的是这小小的果蝇也为人类做出了不少贡献,最近一项研究还发现,果蝇可能与人类存在
果蝇培养基的制作
一、实验目的 掌握果蝇培养基的配制方法。二、实验原理 果蝇在水果摊或果园里常可见到,但它不是以水果为生,而是吃生长在水果上的酵母菌,因此,凡能发酵的基质都可以作为果蝇的饲料。常用的饲料有玉米饲料、米粉饲料、香蕉饲料等。三、实验器具与药品 高压灭菌锅, 电子天平 ,微波炉,培养管,搪瓷缸,纱布、药棉,
小规模快速制备果蝇RNA
试剂、试剂盒 Northern 样品缓冲液 lmol L 乙酸 酚氯仿 DEPC 处理的水 GHCL 溶液 无水乙醇实验步骤 一 材料与设备1)Northern 样品缓冲液:2.2mol/L 甲醛,1mol/LMOPS,50% 甲酰胺2)lmol/L 乙酸3) 酚:氯仿(1:1)4)DEPC 处理的
果蝇的双因子实验
实验方法原理 自由组合定律的实质是基因的分离是独立的,而在配子中非等位基因自由组合,产生四种比例相同的配子。因此在杂种二代会出现四种表型,比例为9:3:3:1。这一实验是利用果蝇的两对相对性状:长翅与残翅、黑檀体与灰体且分别位于不同染色体上这一特征进行的长翅灰体×残翅黑檀体的双因子杂交实验,旨在验证
果蝇单因子杂交实验(图)
根据孟德尔的颗粒遗传学理论,基因是一个独立的结构与功能单位.在杂合状态时不发生混淆,完整地从一代传递到下一代.由该基因的显隐性决定其在下一代的性状表现。单因子杂交是指一对等位基因间的杂交。孟德尔第一定律指出,一对杂合状态的等位基因保持相对的独立性,其自交后代中表型分离比为 3 : l 。本实验将观察
美国生物学家发现激活一关键基因可延缓果蝇衰老进程
美国加州大学洛杉矶分校的生物学家发现,当利用遥控手段将关键器官系统中一种名为AMPK的基因激活时,可以延缓整个机体的衰老进程。果蝇实验显示,如果提高其肠道中AMPK基因的水平,可使果蝇的寿命延长30%,存活期从通常的6周增加到大约8周,而且它们的健康状态也保持得更久。 AMPK基因是细胞中一个
昆明动物所研究发现选择性剪切在果蝇新基因中的进化
选择性剪切(alternative splicing)是一个基因编码出不同转录本和蛋白质的重要途径,对满足生物体所需蛋白多样性具有重要意义。此前的研究显示,新基因通常在序列、基因结构和表达模式上与其祖先基因发生快速的分化。基因结构的改变可能伴随着选择性剪切的改变,但关于新基因选择性
昆明动物所在果蝇基因组进化合作研究中取得新进展
银额果蝇基因组进化研究 性染色体和B染色体(相对于正常染色体而言不遵循孟德尔遗传分裂规律的染色体)的演化一直是经典遗传学长期未曾研究透彻的重要问题。有意思的是,在一种叫做银额果蝇(Drosophila albomicans)的果蝇物种(如图),新近演化出了非常年轻的性染色
果蝇RNA的大规模制备
试剂、试剂盒 5mol LLiCl 70% 乙醇 酚:氯仿(1:1) 20 mg ml 蛋白酶 K 95%(V V) 乙醇 .RNA 匀浆缓冲液 3mol L 乙酸钠实验步骤 一 材料与设备1)5mol/L LiCl2)70% 乙醇:70% (V/V)Ethanol,l0 mmol/L Tris-H
果蝇唾腺染色体制片实验
实验方法原理 果蝇唾腺染色体是处于体细胞同源染色体的配对状态,由于多次复制而不分开,因而形成具有1 000-4 000根染色体丝的巨大染色体,又称为多线染色体.,本实验利用剖离果蝇三龄幼虫的唾腺,,压制染色体玻片标本的方法,观察多线染色体的特征。实验材料 果蝇试剂、试剂盒 水醋酸洋红仪器、耗材 解剖
果蝇胚胎电生理学记录
1.首先要选择测温范围合适的温度计,防止被测物体温度过高时,液柱将温度计胀裂。若无法估计被测物体的温度,则应先用测温范围较大的温度计,然后再挑选合适的温度计,并使其最小分度能符合实验精确度的要求。为减小温度计对实验系统的影响,要求实验系统应有足够大的热容量,这样才能得出较准确的实验结果。2.在测温时
Cell:小果蝇又添大用途
生物通报道:人们曾经认为瘦素leptin这种代谢激素只存在于脊椎动物体内,然而最新研究显示果蝇体内也存在着这样的分子。瘦素leptin是一种营养感应器,它负责调节能量摄入与能量消耗并控制着食欲,因此引起了肥胖症和糖尿病研究者们的强烈兴趣。然而迄今为止,用于研究这一关键性激素的模型只局限于小鼠等复
新型长寿药,延长果蝇寿命16%
日前,发表在《Cell Reports》上的一项研究表明,当给予低剂量的情绪稳定剂锂时,果蝇的寿命会延长16%。对于锂稳定情绪的作用机理,科学家们仍知之甚少,但是他们却发现了延缓衰老的新药物靶点,一种称作为糖原合酶激酶3(glycogen synthase kinase-3,GSK-3)的分子。
2.3.3-小规模快速制备果蝇RNA
盐酸胍可在裂解细胞的同时快速抑制 RNA 酶的活性,本方法利用这特点来分离果蝇 RNA试剂、试剂盒Northern 样品缓冲液lmol L 乙酸酚氯仿DEPC 处理的水GHCL 溶液无水乙醇实验步骤一 材料与设备1)Northern 样品缓冲液:2.2mol/L 甲醛,1mol/LMOPS,50%
果蝇RNA的大规模制备
试剂、试剂盒 5mol LLiCl 70% 乙醇 酚:氯仿(1:1) 20 mg ml 蛋白酶 K 95%(V V) 乙醇
果蝇信息素和性行为
一项研究提示,果蝇信息素的进化很可能让雄性利用了其它雄性的预先存在的感觉偏差。动物表现出了一大批竞争配偶的性状,但是人们尚不清楚这些性特征是如何出现并且进化的。Joanne Yew及其同事研究了一种称为CH503的信息素的进化起源,这种信息素是由雄性果蝇分泌的,在交配时转移给雌性,而后阻止了
解析果蝇幼虫“主演”的黑白短片
Marta Zlatic拥有可谓最冗长乏味的影片资料库。在她位于美国弗吉尼亚州霍华德·休斯医学研究所珍妮莉亚研究园区的实验室中,这位神经科学家储存了2万多个小时、由果蝇幼虫“主演”的黑白短片。这些影片的主角正在做一些日常的事情,比如蠕动、爬行,但它们能帮助回答现代神经科学中的最重要问题之一 —
果蝇唾腺染色体制片技术
实验概要1、练习分离果蝇幼虫唾腺的技术,学习唾腺染色体的制片方法; 2、观察果蝇唾腺的形态学及遗传学特征; 3、了解体细胞染色体配对现象;实验原理本世纪初,D.Kostoff用压片法首先在D.melanogaster果蝇幼虫的唾液腺细胞核中发现了特别巨大的染色体—唾液腺染色体(salivary
Cell:果蝇如何辨别自己人
加州大学的研究团队发现,雄果蝇前腿的一个感知系统,能够辨别雌性果蝇的种属,文章于六月二十七日发表在Cell杂志上。这是进化过程中的一个重要机制,可以使动物避免与其他种属交配。不过迄今为止,人们对这一机制还并不了解。 研究人员发现,雄性黑腹果蝇前腿的感觉神经元,表达一种化学受体Gr32a,这
-果蝇知道该喝什么“酒”
通常,果蝇的幼虫在含有合适的酒精浓度食物中生长,会更健康,体型更大,并且能够更好地防止寄生虫寄生。作为它们的父母,成年果蝇也知道什么样的酒精浓度最适合后代生存,在产卵的时候为其选择最佳的酒精浓度,以保障后代健康生长。 成年果蝇的这一偏好机制,日前被研究者揭示,研究人员表示,果蝇大脑中有两种