光谱中红外,紫外,可见光的光谱范围分别为多少

红外光谱范围一般是780nm ~ 300μm可见光波段为 380nm ~ 780nm紫外光谱范围 10nm ~ 380nm......阅读全文

红外硫碳仪

红外硫碳仪是一种基于红外检测原理的新型碳含量测定仪器。样品经高温燃烧后,其中的碳转化成CO2,CO2被引入红外检测池,由于CO2吸收一定量的红外能量,从而引起仪器检测端信号的变化。根据朗伯-比尔定律,即可计算出样品中碳和硫的含量。

红外成像的原理

红外成像技术是一项前途广阔的高新技术。比0.78微米长的电磁波位于可见光光谱红色以外,称为红外线,又称红外辐射。是指波长为0.78—1000微米的电磁波,其中波长为0.78—2.0微米的部分称为近红外,波长为2.0—1000微米的部分称为热红外线。自然界中,一切物体都可以辐射红外线,因此利用探测仪测

红外成像的优势

  在夜间观察遇到的最大难点是光强不足及对比度差,在夜视技术没出现之前或技术不发达时,单凭人眼是很难在夜间观察目标及环境的,因此,夜间也就成为非法活动如抢劫、恐怖活动等频繁发生时间段。据统计,世界上47%的暴力犯罪案件发生在晚6点到早6点之间。原因很简单,在夜幕的笼罩下,罪犯分子易于隐蔽,易于接近受

医用红外热像仪概述

  医用红外热像仪,红外探测器是热成像技术的核心,探测器的技术水平决定了热成像的技术水平。  红外热像技术被应用到医学领域已有40多年历史,自从1956年英国医生Lawson用红外热像技术诊断乳腺癌以来,医用红外热像技术逐步受到人们的关注。红外热像技术在我国起步较晚,1976年上海率先试制成功第一台

红外热像仪操作规范

红外热像仪使用方法正确使用红外热像仪的方法和技巧   1)调整焦距   2)选择正确的测温范围   3)了解最大测量距离   4)仅仅要求生成清晰红外热图像,还是同时要求测温   5)工作背景单一   6)保证测量过程中仪器平稳    

红外热像仪简介应用

通俗地讲热像仪就是将物体发出的不可见红外能量转变为可见的热图像。热图像的上面的不同颜色代表被测物体的不同温度。通过查看热图像,可以观察到被测目标的整体温度分布状况,研究目标的发热情况,从而进行下一步工作的判断。 现代热像仪的工作原理是使用光电设备来检测和测量辐射,并在辐射与表面温度之间建立相

红外测温仪

  测温范围 -32℃~375℃   测温度 ±2%or±2℃   测量距离比率 12:1   发射率 0.95固定发射率   响应时间和响应时长 500ms&(8-14)um   重复性 ±1%or±1℃   ℃/℉温度单位转换   数据保持显示功能   镭射目标显

红外热像仪应用范围

  一、电力设备检测  输电设备:接头、绝缘子、夹板、跳线、高压线、压接套管、瓷瓶引线……变电系统:互感器、隔离开关、空气断线器、油断路器、少油量断路器、避雷器、电容器、电抗器、变压器、总线、套管、整流器、绝缘子、线夹、阻波器……配电系统:配电盘、开关箱、变压器、断电器、接触器、保险丝、电缆……发

红外测油仪

红外测油仪[1] 是一种检测仪器,主要用于监测水的质量和危险的垃圾点与监测油、水分离过程等多项用途。红外测油仪实质就是根据特殊情况的需要,限定了波长范围的红外光谱仪。具有专业性强、稳定性好、快速、简便等特点。

红外热像仪的定义

  红外热像仪是把物体发出的不可见红外能量转变为可见热图像的仪器,热图像的上面的不同颜色代表被测物体的不同温度。红外热像仪利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,热像图与物体表面的热分布场相对应。

红外光谱技术

这些年来医学有了很大的发展,越来越多的不治之症变得有可能。随着人类社会的不断发展,人们对于健康有了很大的关注,其中药用安全也是人们常常谈到的话题。对于咱们中国人来说,中医是我们特有的医疗方式。目前,“指纹图谱”被作为中药现代化的一个代表,炒作得热闹非常。内行人都知道,色谱、光谱、波谱这三种方法均可用

红外热像仪的简介

  红外热像仪最早是因为军事目的而得以开发,后来迅速向民用工业领域扩展。自二十世纪70年代,欧美一些发达国家先后开始使用红外热像仪在各个领域进行探索。红外热像仪也经过几十年的发展,已经发展成非常轻便的现场测试设备。由于测试往往产生的温度场差异不大和现场环境复杂等因素,好的热像仪必须具备320*240

红外成像的原理

  按成像原理和制造技术,夜视技术可分为:  1、微光夜视  2、红外夜视  从上面的分析的技术特点来看,被动红外热成像夜视仪是夜视设备的主流,特别是红外热像仪技术已长足发展及成本大幅度降低的今天,军方主流的光电观瞄设备都是三光合一,即集成可见光、热像仪、激光测距机。微光夜视主要是应用于某些特殊场合

中红外波数范围

1、4000-4004000-13001300-4002、H=A+B/u+CuH=A+Cmu+Csmu3、分子离子峰、碎片离子峰、同位素离子峰、亚稳离子峰4、2个

远红外的范围

远红外波段8~14微米。根据使用者的要求不同,红外线划分范围很不相同。把能通过大气的三个波段划分为:近红外波段1~3微米;中红外波段3~5微米;远红外波段8~14微米。根据红外光谱划分为:近红外波段1~3微米;中红外波段3~40微米;远红外波段40~1000微米。医学领域中常常如此划分:近红外区0.

红外热像仪的分类

  红外热像仪根据其不同的使用形式,可以分为手持式红外热像仪和在线式红外热像仪。    手持式热像仪一般外形比较小巧,结构紧凑,轻巧便携,而且配有电池,可以很大程度的满足不同工作场合的使用,非常适合于电气安装、机电设备、过程设备、HVAC/R设备及其它更多应用的排障工作。    在线式热像仪不同于手

红外识谱歌

     红外可分远中近,中红特征指纹区, 1300来分界,注意横轴划分异。  看图要知红外仪,弄清物态液固气。  样品来源制样法,物化性能多联系。  识图先学饱和烃,三千以下看峰形。  2960、2870是甲基,2930、2850亚甲峰。  1470碳氢弯,1380甲基显。  二个甲基同一碳,13

红外热像仪研究背景

  由来:1800年英国物理学家F. W.赫胥尔发现了红外线,红外线是一种电磁波,它在电磁波连续频谱中的位置是处于无线电波与可见光之间的区域。红外线辐射是自然界存在的一种最为广泛的电磁波辐射,它是基于任何物体在常规环境下都会产生自身的分子和原子无规则的运动,并不停地辐射出热红外能量,分子和原子的运动

红外热像仪应用案例

  1982年4月─6月,英国和阿根廷之间爆发马尔维纳斯群岛战争。4月13日半夜,英军攻击承军据守的最大据点斯坦利港。3000名英军布设的雷区,突然出现在阿军防线前。英国的所有枪支、火炮都配备了红外夜视仪(便携式红外热像仪,下同),能够在黑夜中清楚地发现阿军目标。而阿军却缺少夜视仪,不能发现英军,只

红外探头工作原理

 红外探头工作原理:  被动红外探头是靠探测人体发射的红外线而进行工作的。探头收集外界的红外辐射通过聚集到红外感应源上面。红外感应源通常采用热释电元件,这种元件在接收了红外辐射温度发生变化时就会向外释放电荷,检测处理后产生报警。  1)这种探头是以探测人体辐射为目标的。所以辐射敏感元件对波长为10μ

中红外波数范围

1、4000-4004000-13001300-4002、H=A+B/u+CuH=A+Cmu+Csmu3、分子离子峰、碎片离子峰、同位素离子峰、亚稳离子峰4、2个

红外热像仪的特点

  1、作用距离远   一般的红外灯产品只有不到100米的成像距离。热像仪对物体辐射的红外线进行成像,不受环境光和照明光的限制,一般长焦热成像仪能观测3千米以上的人员和6千米以上的车辆。  2、隐蔽性强   它完全是被动地接收信号,不主动发射探测信号,这样就不容易被反侦察手段所发现。  3、穿透能力

红外热成像原理

1.什么是红外线?在自然界中,凡是温度大于绝对零度dao(-273℃)的物体都能辐射红外线,它和可见光、紫外线、X射线、伽玛线、宇宙线和无线电波一起,构成了一个完整连续的电磁波谱。其波长在0.78μm至1000μm之间,是比红光波长长的非可见光。红外线2. 红外热像仪工作原理红外热像仪是将红外热辐射

红外ATR附件解析

1. 衰减全反射(ATR)   傅立叶红外(FTIR)有很高的信噪比和灵活性,与ATR结合使用,在材料表面结构的定性及定量研究中发挥了重要作用。很多高分子材料如塑料、橡胶、纤维、涂层等用一般的透射法测量很困难,但使用FTIR和ATR联用技术,则可以很方便地测绘其红外光谱。同时,利用ATR测试技术,可

红外成像技术原理

1.什么是红外线?在自然界中,凡是温度大于绝对零度dao(-273℃)的物体都能辐射红外线,它和可见光、紫外线、X射线、伽玛线、宇宙线和无线电波一起,构成了一个完整连续的电磁波谱。其波长在0.78μm至1000μm之间,是比红光波长长的非可见光。红外线2. 红外热像仪工作原理红外热像仪是将红外热辐射

红外分峰拟合

拟合光谱峰的确比较麻烦,特别是当谱峰交叠严重的时候,所以你需要对谱峰进行二阶导,查看拐点,这样有助于寻找隐藏的谱峰。

红外波长是多少

红外线(IR)的波长位于780 nm和1mm之间,对应的频率是300 GHz和400 THz之间。光线是一种辐射电磁波,其波长分布自300nm(紫外线)到14,000nm(远红外线)。不过以人类的经验而言,“光域”通常指的是肉眼可见的光波域,即是从400nm(紫)到700nm(红)可以被人类眼睛感觉

什么是原位红外

原位红外是指测试反应过程中在原位不动下用红外线扫描机记录微观的反应变化。原位红外主要是测试反应过程中,官能团结构的变化,可以更好的模拟实验过程,对解释反应机理很有帮助。在催化剂表征方面,可以模拟出催化剂催化原理。

红外吸收光谱

  大多数材料会吸收红外光谱区域中波长为0.8 µm至14 µm的电磁辐射,这些波长是材料分子结构的特征。红外吸收光谱法是一种常见的化学分析工具,用于测量已穿过样品的红外光束的吸收率。红外光谱中吸收峰的位置是样品化学成分或纯度的特征,吸收峰的强度与该峰为特征的物质的浓度成正比。  红外光谱可用于气体