锂电池材料硅酸凝胶的简介
基本信息 名称:硅胶 别名:氧化硅胶或硅酸凝胶 英文名称:Silica gel; Silica 分子式:xSiO2·yH2O 分子量:60.08 CAS 登录号:CAS# 112926-00-8 EINECS 登录号:231-545-4 词语解释 化学式xSiO2·yH2O。透明或乳白色粒状固体。具有开放的多孔结构,吸附性强,能吸附多种物质。在水玻璃的水溶液中加入稀硫酸(或盐酸)并静置,便成为含水硅酸凝胶而固态化。以水洗清除溶解在其中的电解质Na+和SO4 2-( Cl-)离子,干燥后就可得硅胶。如吸收水分,部分硅胶吸湿量约达40%,甚至300%。用于气体干燥,气体吸收,液体脱水,色层分析等,也用做催化剂。如加入氯化钴,干燥时呈蓝色,吸水后呈红色。可再生反复使用。......阅读全文
锂电池材料硅酸凝胶的简介
基本信息 名称:硅胶 别名:氧化硅胶或硅酸凝胶 英文名称:Silica gel; Silica 分子式:xSiO2·yH2O 分子量:60.08 CAS 登录号:CAS# 112926-00-8 EINECS 登录号:231-545-4 词语解释 化学式xSiO2·yH2O。透
锂电池材料硅酸凝胶的安全性能介绍
硅胶是一种非晶态二氧化硅,应控制车间粉尘含量不大于10毫克/立方米,需加强排风,操作时戴口罩。 硅胶有很强的吸附能力,对人的皮肤能产生干燥作用,因此,操作时应穿戴好工作服。若硅胶进入眼中,需用大量的水冲洗,并尽快找医生治疗。 蓝色硅胶由于含有少量的氯化钴,有潜在毒性,应避免和食品接触和吸入口
锂电池材料硅酸铁锂的简介
硅酸亚铁锂(Li2FeSiO4)能可逆地嵌脱Li+,比容量较高,可用作锂离子电池正极材料。通过计算电负性考察聚阴离子体系Li2MSiO4(M = Fe、Mn、Ni和Co)的结构稳定性与电极电位的关系,认为:Li2CoSiO4与Li2NiSiO4的电压平台高于所用电解液的承受能力;而Li2MnSi
锂电池材料硅酸凝胶的分类无机硅胶的介绍
无机硅胶是一种高活性吸附材料,通常是用硅酸钠和硫酸反应,并经老化、酸泡等一系列后处理过程而制得。硅胶属非晶态物质,其化学分子式为mSiO2 .nH2O。不溶于水和任何溶剂,无毒无味,化学性质稳定,除强碱、氢氟酸外不与任何物质发生反应。各种型号的硅胶因其制造方法不同而形成不同的微孔结构。硅胶的化学
关于锂电池材料硅酸铁锂的溶胶凝胶法介绍
将LiCH3COO·2H2O 和柠檬酸铁溶于水中,边搅拌边缓慢加入饱和柠檬酸溶液,再加入溶于乙醇的正硅酸乙酯(TEOS);在80℃下保温14h,形成溶胶,在75℃下挥发乙醇后,得到凝胶;将凝胶在100℃下烘干,得到干凝胶;经过700℃ /12h 的退火处理,得到最终产物。产物以C/16在1.5~
锂电池材料硅酸铁锂的微波法合成简介
将Li2CO3、FeC2O4·2H2O、纳米SiO2和葡萄糖分散在丙酮中,球磨16h 后干燥,制成块状;在氩气气氛中、微波恒温700℃处理12 min,合成Li2FeSiO4/C 样品。所得产物以C/20在2.0~3.8 V 循环,首次放电比容量为94 mAh /g,10次循环后下降为88.4
锂电池材料硅酸铁锂的自蔓延燃烧法合成简介
将LiNO3、Fe(NO3)3·9H2O、纳米SiO2溶于水中,加入蔗糖,将外部加热装置设定在120℃,搅拌升温蒸发水分,继续加热。前驱体中含有大量的硝酸盐及蔗糖,混合物发生自蔓延燃烧并生成粉末。 将粉末在CO/CO2气流的保护下,于800℃保温10 h,所得样品在60 ℃下,以C/20 在1
锂电池材料硅酸铁锂的水热(溶剂热)法合成简介
将Fe(CH3COO)2·4H2O、Li(CH3COO)·2H2O、SiO2与葡萄糖混合,在水热釜中(装填率67%)200℃下保温72h,取出后洗涤、离心分离,即得到Li2FeSiO4/C样品。该方法在水热反应的过程中实现了碳的包覆,简化了合成过程。产物以C/5 在1.5~4.5V循环,首次放电
锂电池正极材料硅酸盐的介绍
化学术语,所谓硅酸盐指的是硅、氧与其它化学元素 (主要是铝、铁、钙、镁、钾、钠等)结合而成的化合物的总称。它在地壳中分布极广,是构成多数岩石(如花岗岩)和土壤的主要成分。大多数熔点高,化学性质稳定,是硅酸盐工业的主要原料。硅酸盐制品和材料广泛应用于各种工业、科学研究及日常生活中。
锂电池正极材料硅酸盐的基本结构
由于其结构上的特点,种类繁多(硅酸盐矿物的基本结构是硅――氧四面体;在这种四面体内,硅原子占据中心,四个氧原子占据四角。这些四面体,依着四面体,依着不同的配合,形成了各类的硅酸盐)。硅酸盐结构众多、种类繁多:有岛状的橄榄石、层状的石英、环状的蒙脱石等。它们大多数熔点高,化学性质稳定,是硅酸盐工业
锂电池材料硅酸铁锂的熔融盐法介绍
采用熔融碳酸盐法合成Li2FeSiO4材料,将Li2CO3、Na2CO3、K2CO3按物质的量比0. 435∶0. 315∶0. 250混合,在CO2气氛中、700℃下烧结1 h,得到复合碳酸盐;将复合盐、FeC2O4·H2O和Li2SiO3按物质的量比6∶5∶5混合,在CO2 /H2气氛中、5
锂电池材料硅酸铁锂的相关问题介绍
Li2FeSiO4材料有多种晶型,不同合成温度与合成方法都会对材料的结构产生影响,较低温度和溶胶凝胶法制备的材料性能较好。Li2FeSiO4可实现多于1 个Li + 的脱嵌,理论比容量高,在高电位下可生成Fe4+ 离子。与LiFePO4类似,Li2FeSiO4也是一维的Li + 通道,材料较低的
锂电池材料硅酸铁锂的改性包覆碳材料介绍
由于本征电导率和离子扩散速率很低,纯Li2FeSiO4材料几乎没有电化学活性。碳包覆可提高材料的导电性和电化学性能,包覆的碳源分为两种: ①无机碳源,主要是一些碳的单质,如碳凝胶、乙炔黑或CNT; ②有机碳源,依靠有机物在惰性环境下分解形成碳的包覆层,一般又分为小分子有机物(如柠檬酸、蔗糖、
硅酸凝胶的制取方法
硅酸钠溶液和酸性物质反应制取。1.在10毫升20形硅酸钠溶液中,逐滴加入6N盐酸1 .5毫升,2.出现白色浑浊后,再滴加0.5毫升此盐酸,边滴边振荡,可得白色凝胶.3.在5毫升20另硅酸钠溶液中,通入二氧化碳气体约在10毫升20形硅酸钠溶液中,逐滴加入6N盐酸1 .5毫升,2.出现白色浑浊后,再滴加
锂电池正极材料硅酸盐的链状结构
具有由一系列[ZO4]四面体以角顶相连成一维无限延伸的链状硅氧骨干的硅酸盐矿物。链与链间由金属阳离子(主要有Ca、Na、Fe、Mg、Al、Mn等)相连。已发现链的类型有20余种,其中最主要的是辉石单链[Si2O6]4-和闪石双链[Si4O11]6-。 在链状结构硅酸盐矿物中,由于硅氧骨干呈一向
关于锂电池正极材料硅酸盐的原理介绍
微波是电磁波中位于远红外与无线电之间的一种电磁辐射,它的频率范围为300MHz~3×105MHz。微波加热与传统的加热方式有所不同,微波加热属于一种内部加热方式,其被加热的样品与酸混合物通过吸收微波能产生的即时深层加热。与此同时,微波所产生的交变磁场会促使介质分子发生极化的现象,而极性分子又可以
锂电池材料硅酸铁锂的基本信息介绍
硅酸亚铁锂是一种化学药品,分子式是Li2FeSiO4。硅酸亚铁锂(Li2FeSiO4)能可逆地嵌脱Li+,比容量较高,可用作锂离子电池正极材料。通过计算电负性考察聚阴离子体系Li2MSiO4(M = Fe、Mn、Ni和Co)的结构稳定性与电极电位的关系,认为:Li2CoSiO4与Li2NiSiO
简述锂电池正极材料硅酸盐的层状结构
具有由一系列[ZO4]四面体以角顶相连成二维无限延伸的层状硅氧骨干的硅酸盐矿物。硅氧骨干中最常见的是每个四面体均以三个角顶与周围三个四面体相连而成六角网孔状的单层,其所有活性氧都指向同一侧。它广泛地存在于云母、绿泥石、滑石、叶蜡石、蛇纹石和粘土矿物中,通常称之为四面体片。四面体片通过活性氧再与其
锂电池材料硅酸铁锂的离子掺杂改性介绍
碳包覆可提高电子的导电率,但不能改变材料的本征Li+扩散速率。有针对地选择一些金属离子取代晶格中的Li+或Fe2+,可改变材料的能带结构,使电导率得到提高。 考察了Mn 掺杂量对Li2FeSiO4性能的影响,认为Li2Fe0. 8Mn0.2 SiO4的电化学性能最好,以C/32倍率1.5~4.
锂电池材料硅酸铁锂的喷雾热解法合成介绍
利用球磨和喷雾干燥法,制备具有高活性、良好表面形貌的前驱体。用水作为分散剂,将FeC2O4·2H2O、Li2C2O4和SiO2球磨10 h,所得浆料于100℃干燥,制成前驱体,在Ar气氛中、350℃下预烧3h;再添加蔗糖,以乙醇为分散剂,球磨15h,在120℃真空(真空度为113Pa)喷雾干燥,
关于锂电池正极材料硅酸盐的实验分析介绍
1 仪器与试剂 仪器:家用微波炉。 试剂:水泥熟料标样;普通硅酸盐水泥标样;水泥生料标样;TEA(三乙醇胺)(体积配合比1:2);盐酸;KOH溶液;EDTA标样;钙黄绿素-甲基百里香酚蓝-酚酞混合指示剂(CMP混合指示剂)。 2 实验方法 (1)EDTA标液的标定 首先取一定体积的Ca
锂电池材料硅胶凝胶的物理特性介绍
黏度 科技名词解释:液体,拟液体或拟固体物质抗流动的体积特性,即受外力作用而流动时,分子间所呈现的内摩擦或流动内阻力。 通常情况下黏度和硬度成正比。 硬度 材料局部抵抗硬物压入其表面的能力称为硬度。硅橡胶具有10至80的邵氏硬度范围,这就给予设计师以充分的自由来选择所需的硬度,以最佳地实现
锂电池材料硅酸铁锂的不同制备方法的优缺点
固相反应法工艺简单,但产品质量稳定,均匀性和重现性较差,原料、合成温度、烧结时间和工艺对产品性能的影响较大。溶胶-凝胶法制备的产品均匀性好,粒径较小且分布均匀,形貌和活性较好;但使用大量的有机试剂,制备的成本高、工艺复杂,且对环境不友好。自蔓延燃烧法有利于降低能耗;但使用大量的有机物,制备的成本
关于锂电池负极材料纳米材料的简介
纳米颗粒材料又称为超微颗粒材料,由纳米粒子(nano particle)组成。纳米粒子也叫超微颗粒,一般是指尺寸在1~100nm间的粒子,是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和宏观的观点看,这样的系统既非典型的微观系统亦非典型的宏观系统,是一种典型的介观系统,它具有表面效应、小
锂电池材料硅酸铁锂的超临界热合成法介绍
利用超临界热合成法制备Li2FeSiO4纳米片。将FeCl2·4H2O和TEOS溶解于乙醇中、LiOH·H2O和柠檬酸溶解于水中,两种溶液混匀后装入容器,在400℃下保温10 min,急冷后离心干燥,得到产物。将产物与碳纳米管(CNT)混合,再在Ar气氛中、300℃下保温3h,得到Li2FeSi
关于锂电池材料硅酸铁锂的高温固相法介绍
利用固相法,以Li2SiO3与FeC2O4·H2O为原料合成了Li2FeSiO4。将原料在丙酮中分散,加入质量分数10%的碳凝胶,用CO/CO2气氛防止Fe2+ 被氧化,在750 ℃下保温24h。所得样品以C/16 在2.0~3.7 V 循环,在60℃下的首次放电比容量为165 mAh/g,经过
简述锂电池正极材料硅酸盐的化学性质
化学上,指由硅和氧组成的化合物,有时亦包括一种或多种金属或氢元素。从概念上可以说硅酸盐是硅,氧和金属组成的化合物的总称。它亦用以表示由二氧化硅或硅酸产生的盐。能与酸反应生成硅酸固体。在普通情况下,最稳定的硅酸盐是二氧化硅(SiO2)和其他物质组成的化合物。 二氧化硅经常有微量的硅酸处于平衡状态。
硅酸的用途简介
用于气体及蒸汽的吸附,油脂、蜡的脱色,催化剂及其载体的制备。用于生产钨丝的溶剂,分析化学上的化学试剂、接触剂和色谱分离的吸附剂,制造硅胶和硅酸盐的原料。在分析化学中能将不溶性氟化物如氟化钙、氟化铝转化为可溶性溶液,进行氟的测定。
关于锂电池正极材料的简介
锂离子电池是以2种不同的能够可逆地插入及脱出锂离子的嵌锂化合物分别作为电池的正极和负极的二次电池体系。充电时,锂离子从正极材料的晶格中脱出,经过电解质后插入到负极材料的晶格中,使得负极富锂,正极贫锂;放电时锂离子从负极材料的晶格中脱出,经过电解质后插入到正极材料的晶格中,使得正极富锂,负极贫锂。
锂电池负极材料铜箔的简介
铜箔是一种阴质性电解材料,沉淀于电路板基底层上的一层薄的、连续的金属箔, 它作为PCB的导电体。它容易粘合于绝缘层,接受印刷保护层,腐蚀后形成电路图样。 铜箔由铜加一定比例的其它金属打制而成,铜箔一般有90箔和88箔两种,即为含铜量为90%和88%,尺寸为16*16cm 铜箔,是用途最广泛的装