关于锂电池材料硅酸铁锂的溶胶凝胶法介绍

将LiCH3COO·2H2O 和柠檬酸铁溶于水中,边搅拌边缓慢加入饱和柠檬酸溶液,再加入溶于乙醇的正硅酸乙酯(TEOS);在80℃下保温14h,形成溶胶,在75℃下挥发乙醇后,得到凝胶;将凝胶在100℃下烘干,得到干凝胶;经过700℃ /12h 的退火处理,得到最终产物。产物以C/16在1.5~3.8V 循环,首次放电比容量为152. 8 mAh/g,50 次循环的容量保持率为98.3%。 将三嵌段聚合物P123 用于Li2FeSiO4的溶胶-凝胶法合成。将P123与TEOS溶于乙醇,得到粘性混合物,将Li(CH3COO)·2H2O与Fe(NO3)3·9H2O 加入并搅拌,在100℃下挥发乙醇,得到干凝胶,在氩气气氛中、650℃下烧结10 h,得到Li2FeSiO4。聚合物的加入使原料混合均匀,提高了前驱体的活性,产物在1.5~4.8 V 循环,C/10首次放电比容量为185 mAh /g,10C 放电比容量为120mAh......阅读全文

关于锂电池材料硅酸铁锂的溶胶凝胶法介绍

  将LiCH3COO·2H2O 和柠檬酸铁溶于水中,边搅拌边缓慢加入饱和柠檬酸溶液,再加入溶于乙醇的正硅酸乙酯(TEOS);在80℃下保温14h,形成溶胶,在75℃下挥发乙醇后,得到凝胶;将凝胶在100℃下烘干,得到干凝胶;经过700℃ /12h 的退火处理,得到最终产物。产物以C/16在1.5~

关于锂电池材料硅酸铁锂的高温固相法介绍

  利用固相法,以Li2SiO3与FeC2O4·H2O为原料合成了Li2FeSiO4。将原料在丙酮中分散,加入质量分数10%的碳凝胶,用CO/CO2气氛防止Fe2+ 被氧化,在750 ℃下保温24h。所得样品以C/16 在2.0~3.7 V 循环,在60℃下的首次放电比容量为165 mAh/g,经过

锂电池材料硅酸铁锂的微波法合成简介

  将Li2CO3、FeC2O4·2H2O、纳米SiO2和葡萄糖分散在丙酮中,球磨16h 后干燥,制成块状;在氩气气氛中、微波恒温700℃处理12 min,合成Li2FeSiO4/C 样品。所得产物以C/20在2.0~3.8 V 循环,首次放电比容量为94 mAh /g,10次循环后下降为88.4

锂电池材料硅酸铁锂的简介

  硅酸亚铁锂(Li2FeSiO4)能可逆地嵌脱Li+,比容量较高,可用作锂离子电池正极材料。通过计算电负性考察聚阴离子体系Li2MSiO4(M = Fe、Mn、Ni和Co)的结构稳定性与电极电位的关系,认为:Li2CoSiO4与Li2NiSiO4的电压平台高于所用电解液的承受能力;而Li2MnSi

锂电池材料硅酸铁锂的熔融盐法介绍

  采用熔融碳酸盐法合成Li2FeSiO4材料,将Li2CO3、Na2CO3、K2CO3按物质的量比0. 435∶0. 315∶0. 250混合,在CO2气氛中、700℃下烧结1 h,得到复合碳酸盐;将复合盐、FeC2O4·H2O和Li2SiO3按物质的量比6∶5∶5混合,在CO2 /H2气氛中、5

锂电池材料硅酸铁锂的相关问题介绍

  Li2FeSiO4材料有多种晶型,不同合成温度与合成方法都会对材料的结构产生影响,较低温度和溶胶凝胶法制备的材料性能较好。Li2FeSiO4可实现多于1 个Li + 的脱嵌,理论比容量高,在高电位下可生成Fe4+ 离子。与LiFePO4类似,Li2FeSiO4也是一维的Li + 通道,材料较低的

锂电池材料硅酸铁锂的基本信息介绍

  硅酸亚铁锂是一种化学药品,分子式是Li2FeSiO4。硅酸亚铁锂(Li2FeSiO4)能可逆地嵌脱Li+,比容量较高,可用作锂离子电池正极材料。通过计算电负性考察聚阴离子体系Li2MSiO4(M = Fe、Mn、Ni和Co)的结构稳定性与电极电位的关系,认为:Li2CoSiO4与Li2NiSiO

锂电池材料硅酸铁锂的离子掺杂改性介绍

  碳包覆可提高电子的导电率,但不能改变材料的本征Li+扩散速率。有针对地选择一些金属离子取代晶格中的Li+或Fe2+,可改变材料的能带结构,使电导率得到提高。  考察了Mn 掺杂量对Li2FeSiO4性能的影响,认为Li2Fe0. 8Mn0.2 SiO4的电化学性能最好,以C/32倍率1.5~4.

锂电池材料硅酸铁锂的改性包覆碳材料介绍

  由于本征电导率和离子扩散速率很低,纯Li2FeSiO4材料几乎没有电化学活性。碳包覆可提高材料的导电性和电化学性能,包覆的碳源分为两种:  ①无机碳源,主要是一些碳的单质,如碳凝胶、乙炔黑或CNT;  ②有机碳源,依靠有机物在惰性环境下分解形成碳的包覆层,一般又分为小分子有机物(如柠檬酸、蔗糖、

磷酸铁锂合成方法溶胶凝胶法

溶胶凝胶法是较为常见及常用的一种方法。但用此方法制备LiFePO4却不多见,原因主要是LiFePO4对合成过程中的气氛有特殊的要求。

锂电池材料硅酸铁锂的自蔓延燃烧法合成简介

  将LiNO3、Fe(NO3)3·9H2O、纳米SiO2溶于水中,加入蔗糖,将外部加热装置设定在120℃,搅拌升温蒸发水分,继续加热。前驱体中含有大量的硝酸盐及蔗糖,混合物发生自蔓延燃烧并生成粉末。  将粉末在CO/CO2气流的保护下,于800℃保温10 h,所得样品在60 ℃下,以C/20 在1

锂电池材料硅酸铁锂的喷雾热解法合成介绍

  利用球磨和喷雾干燥法,制备具有高活性、良好表面形貌的前驱体。用水作为分散剂,将FeC2O4·2H2O、Li2C2O4和SiO2球磨10 h,所得浆料于100℃干燥,制成前驱体,在Ar气氛中、350℃下预烧3h;再添加蔗糖,以乙醇为分散剂,球磨15h,在120℃真空(真空度为113Pa)喷雾干燥,

锂电池材料硅酸铁锂的水热(溶剂热)法合成简介

  将Fe(CH3COO)2·4H2O、Li(CH3COO)·2H2O、SiO2与葡萄糖混合,在水热釜中(装填率67%)200℃下保温72h,取出后洗涤、离心分离,即得到Li2FeSiO4/C样品。该方法在水热反应的过程中实现了碳的包覆,简化了合成过程。产物以C/5 在1.5~4.5V循环,首次放电

锂电池材料硅酸铁锂的超临界热合成法介绍

  利用超临界热合成法制备Li2FeSiO4纳米片。将FeCl2·4H2O和TEOS溶解于乙醇中、LiOH·H2O和柠檬酸溶解于水中,两种溶液混匀后装入容器,在400℃下保温10 min,急冷后离心干燥,得到产物。将产物与碳纳米管(CNT)混合,再在Ar气氛中、300℃下保温3h,得到Li2FeSi

锂电池材料硅酸铁锂的不同制备方法的优缺点

  固相反应法工艺简单,但产品质量稳定,均匀性和重现性较差,原料、合成温度、烧结时间和工艺对产品性能的影响较大。溶胶-凝胶法制备的产品均匀性好,粒径较小且分布均匀,形貌和活性较好;但使用大量的有机试剂,制备的成本高、工艺复杂,且对环境不友好。自蔓延燃烧法有利于降低能耗;但使用大量的有机物,制备的成本

锂电池材料硅酸凝胶的简介

  基本信息  名称:硅胶  别名:氧化硅胶或硅酸凝胶  英文名称:Silica gel; Silica  分子式:xSiO2·yH2O  分子量:60.08  CAS 登录号:CAS# 112926-00-8  EINECS 登录号:231-545-4  词语解释  化学式xSiO2·yH2O。透

锂电池材料磷酸铁锂的特点介绍

  1、 超长寿数,长寿数铅酸电池的循环寿数在300次左右,最高也就500次,磷酸铁锂动力电池,循环寿数到达2000次以上,规范充电(5小时率)运用,可到达2000次。同质量的铅酸电池是“新半年、旧半年、维护维护又半年”,最多也就1—1.5年时刻,而磷酸铁锂电池在相同条件下运用,将到达5-6年。归纳

简述锂电池正极材料的制备方法溶胶凝胶法

  溶胶凝胶法利用上世纪70年代发展起  来的制备超微粒子的方法,制备正极材料,该方法具备了络合物法的优点,而且制备出的电极材料电容量有较大的提高,属于正在国内外迅速发展的一种方法。缺点是成本较高,技术还属于开发阶段。

锂电池材料硅酸凝胶的安全性能介绍

  硅胶是一种非晶态二氧化硅,应控制车间粉尘含量不大于10毫克/立方米,需加强排风,操作时戴口罩。  硅胶有很强的吸附能力,对人的皮肤能产生干燥作用,因此,操作时应穿戴好工作服。若硅胶进入眼中,需用大量的水冲洗,并尽快找医生治疗。  蓝色硅胶由于含有少量的氯化钴,有潜在毒性,应避免和食品接触和吸入口

关于溶胶凝胶法的基本介绍

  1846年,法国化学家J.J.Ebelmen发现正硅酸酯在空气中水解时会形成凝胶,从而开创了溶胶-凝胶(Sol-Gel)化学的新纪元。所谓溶胶-凝胶法是以金属烷氧化物为先驱体,通过这种先驱体的水解与缩醇化反应形成溶胶,最后通过缩聚反应形成凝胶制品的一种方法。这是一种制备金属氧化物材料的湿化学方法

关于溶胶凝胶法的优点介绍

  溶胶-凝胶法与其它方法相比具有许多独特的优点:  (1)由于溶胶-凝胶法中所用的原料首先被分散到溶剂中而形成低粘度的溶液,因此,就可以在很短的时间内获得分子水平的均匀性,在形成凝胶时,反应物之间很可能是在分子水平上被均匀地混合。  (2)由于经过溶液反应步骤,那么就很容易均匀定量地掺入一些微量元

锂电池材料硅酸凝胶的分类无机硅胶的介绍

  无机硅胶是一种高活性吸附材料,通常是用硅酸钠和硫酸反应,并经老化、酸泡等一系列后处理过程而制得。硅胶属非晶态物质,其化学分子式为mSiO2 .nH2O。不溶于水和任何溶剂,无毒无味,化学性质稳定,除强碱、氢氟酸外不与任何物质发生反应。各种型号的硅胶因其制造方法不同而形成不同的微孔结构。硅胶的化学

锂电池材料橄榄石磷酸铁锂材料的优势介绍

  橄榄石磷酸铁锂LiFePO4(LFP)材料的主要优点是原料资源丰富、成本低、电池安全性和循环性能好,其主要缺点是电池比能量低。该材料不仅在电动自行车、电动大巴、电动公交车、特种车行业得到了广泛应用,而且在大规模储能行业得到了广泛的应用。由于该材料中锂离子沿一维通道传输,因此材料具有显著的各向异性

关于溶胶凝胶法的分类

  溶胶-凝胶法按产生溶胶凝胶过程机制主要分成三种类型:  (1)传统胶体型。通过控制溶液中金属离子的沉淀过程,使形成的颗粒不团聚成大颗粒而沉淀得到稳定均匀的溶胶,再经过蒸发得到凝胶。  (2)无机聚合物型。通过可溶性聚合物在水中或有机相中的溶胶过程,使金属离子均匀分散到其凝胶中。常用的聚合物有聚乙

关于溶胶凝胶法的简介

  溶胶-凝胶法就是用含高化学活性组分的化合物作前驱体,在液相下将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明溶胶体系,溶胶经陈化胶粒间缓慢聚合,形成三维网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。

锂电池的正极磷酸铁锂材料的简介

  锂电池的正极为磷酸铁锂材料。这种新材料不是以往的锂电池正极材LiCoO2;LiMn2O4;LiNiMO2。其安全性能与循环寿命是其它材料所无法相比的,这些也正是动力电池最重要的技术指标。1C充放循环寿命达2000次。单节电池过充电压30V不燃烧,不爆炸。穿刺不爆炸。磷酸铁锂正极材料做出大容量锂电

溶胶凝胶法的历史发展介绍

  1846年法国化学家J.J.Ebelmen用SiCl4与乙醇混合后生成四乙氧基硅烷(TEOS),发现在湿空气中发生水解并形成了凝胶。  20世纪30年代W.Geffcken证实用金属醇盐的水解和凝胶化可以制备氧化物薄膜。  1971年德国H.Dislich报道了通过金属醇盐水解制备了SiO2-B

磷酸铁锂材料的特点相关介绍

  由于磷酸铁锂材料的固有特点,决定其低温性能劣于锰酸锂等其他正极材料。一般情况下,对于单只电芯(注意是单只而非电池组,对于电池组而言,实测的低温性能可能会略高,这与散热条件有关)而言,其0℃时的容量保持率约60~70%,-10℃时为40~55%,-20℃时为20~40%。这样的低温性能显然不能满足

关于锂电池正极材料硅酸盐的原理介绍

  微波是电磁波中位于远红外与无线电之间的一种电磁辐射,它的频率范围为300MHz~3×105MHz。微波加热与传统的加热方式有所不同,微波加热属于一种内部加热方式,其被加热的样品与酸混合物通过吸收微波能产生的即时深层加热。与此同时,微波所产生的交变磁场会促使介质分子发生极化的现象,而极性分子又可以

溶胶凝胶法简介

  1846年,法国化学家J.J.Ebelmen发现正硅酸酯在空气中水解时会形成凝胶,从而开创了溶胶-凝胶(Sol—Gel)化学的新纪元。所谓溶胶-凝胶法是以金属烷氧化物为先驱体,通过这种先驱体的水解与缩醇化反应形成溶胶,最后通过缩聚反应形成凝胶制品的一种方法。这是一种制备金属氧化物材料的湿化学方法