简述共价键的主要特点
1、饱和性 在共价键的形成过程中,因为每个原子所能提供的未成对电子数是一定的,一个原子的一个未成对电子与其他原子的未成对电子配对后,就不能再与其它电子配对,即,每个原子能形成的共价键总数是一定的,这就是共价键的饱和性。 共价键的饱和性决定了各种原子形成分子时相互结合的数量关系 [9] ,是定比定律(law of definite proportion)的内在原因之一。 2、方向性 除s轨道是球形的以外,其它原子轨道都有其固定的延展方向,所以共价键在形成时,轨道重叠也有固定的方向,共价键也有它的方向性,共价键的方向决定着分子的构形。 [9] 影响共价键的方向性的因素为轨道伸展方向。......阅读全文
简述共价键的主要特点
1、饱和性 在共价键的形成过程中,因为每个原子所能提供的未成对电子数是一定的,一个原子的一个未成对电子与其他原子的未成对电子配对后,就不能再与其它电子配对,即,每个原子能形成的共价键总数是一定的,这就是共价键的饱和性。 共价键的饱和性决定了各种原子形成分子时相互结合的数量关系 [9] ,是
共价键的主要特点
饱和性在共价键的形成过程中,因为每个原子所能提供的未成对电子数是一定的,一个原子的一个未成对电子与其他原子的未成对电子配对后,就不能再与其它电子配对,即,每个原子能形成的共价键总数是一定的,这就是共价键的饱和性。 共价键的饱和性决定了各种原子形成分子时相互结合的数量关系 ,是定比定律(law of
共价键的主要特点
饱和性在共价键的形成过程中,因为每个原子所能提供的未成对电子数是一定的,一个原子的一个未成对电子与其他原子的未成对电子配对后,就不能再与其它电子配对,即,每个原子能形成的共价键总数是一定的,这就是共价键的饱和性。共价键的饱和性决定了各种原子形成分子时相互结合的数量关系 ,是定比定律(law of d
简述共价键的形成
A,B 两原子各有一个成单电子,当 A,B 相互接近时,两电子以自旋相反的方式结成电子对,即两个电子所在的原子轨道能相互重叠,则体系能量降低,形成化学键,亦即一对电子则形成一个共价键。 形成的共价键越多,则体系能量越低,形成的分子越稳定。因此,各原子中的未成对电子尽可能多地形成共价键。配位键形
简述共价键的化学性质
化学变化的本质是旧键的断裂和新键的形成,化学反应中,共价键存在两种断裂方式,在化学反应尤其是有机化学中有重要影响。 均裂与自由基反应 共价键在发生均裂时,成键电子平均分给两个原子(团),均裂产生的带单电子的原子(团)称为自由基,用“R·”表示,自由基具有反应活性,能参与化学反应,自由基反应一
简述DNA指纹的主要特点
1.高度的特异性:研究表明,两个随机个体具有相同DNA图形的概率仅3×10^-11;如果同时用两种探针进行比较,两个个体完全相同的概率小于5×10^-19。全世界人口约50亿,即5×10^9。因此,除非是同卵双生子女,否则几乎不可能有两个人的DNA指纹的图形完全相同。 2.稳定的遗传性:DNA
共价键的互斥理论
互斥理论价层电子对互斥理论(VSEPR Theory)是一个用来预测单个共价分子形态的化学模型。理论通过计算中心原子的价层电子数和配位数来预测分子的几何构型,其理论要点有:1、共价分子中,中心原子周围电子对排布的几何形状,主要决定于中心原子的价电子层中的电子对数(包括成键电子对和孤对电子)。这些电子
共价键的分类方式
共价键从不同的角度可以进行不同的分类,每一种分类都包括了所有的共价键(只是分类角度不同)。按成键方式图6 σ键σ键(sigma bond)由两个原子轨道沿轨道对称轴方向相互重叠导致电子在核间出现概率增大而形成的共价键,叫做σ键,可以简记为“头碰头”(见图6)。 σ键属于定域键,它可以是一般共价键,
简述自动光学检测的主要特点
1)自动光学检测—高速检测系统:与PCB板贴装密度无关 2)自动光学检测—快速便捷的编程系统 图形界面下进行 运用帖装数据自动进行数据检测 运用元件数据库进行检测数据的快速编辑 3)自动光学检测—运用丰富的专用多功能检测算法和二元或灰度水平光学成像处理技术进行检测 4)自动光学检测—
简述恒温水槽的主要特点
恒温水槽是自带制冷和加热的高精度恒温源,可在机内水槽进行恒温实验,或通过软管与其他设备相连,作为恒温源配套使用。广泛用于石油、化工、电子仪表、物理、化学、生物工程、医药卫生、生命科学、轻工食品、物性测试及化学分析等研究部门,高等院校,企业质检及生产部门,为用户工作时提供一个热冷受控,温度均匀恒定的
简述组成酶的主要特点
组成酶 constitutive enzyme 与生长发育条件无关,常进行定量合成的酶。按其合成方式,可与诱导酶、抑制性酶相对应。可能是因为缺少产生阻遏蛋白等的调节基因或调节基因原来就发生了变异引起的。因此,此类酶的合成量是由附着在启动子上的RNA聚合酶的亲和性等所决定的因系统的不同有很大的差异
简述热敏电阻的主要特点
热敏电阻的主要特点是: ①灵敏度较高,其电阻温度系数要比金属大10~100倍以上,能检测出10-6℃的温度变化; ②工作温度范围宽,常温器件适用于-55℃~315℃,高温器件适用温度高于315℃(目前最高可达到2000℃),低温器件适用于-273℃~-55℃; ③体积小,能够测量其他温度计
二硫键是共价键还是非共价键
是两个硫原子之间形成的共价键,一般指多肽链中的两个半胱氨酸残基侧链的硫原子之间形成的共价键。二硫键(disulfide bond)是连接不同肽链或同一肽链中,两个不同半胱氨酸残基的巯基的化学键。二硫键是比较稳定的共价键,在蛋白质分子中,起着稳定肽链空间结构的作用。二硫键数目越多,蛋白质分子对抗外界因
共价键互斥理论
价层电子对互斥理论(VSEPR Theory)是一个用来预测单个共价分子形态的化学模型。理论通过计算中心原子的价层电子数和配位数来预测分子的几何构型,其理论要点有:1、共价分子中,中心原子周围电子对排布的几何形状,主要决定于中心原子的价电子层中的电子对数(包括成键电子对和孤对电子)。这些电子的位置倾
什么是共价键?
共价键(covalent bond),是化学键的一种,两个或多个原子共同使用它们的外层电子,在理想情况下达到电子饱和的状态,由此组成比较稳定的化学结构,像这样由几个相邻原子通过共用电子并与共用电子之间形成的一种强烈作用叫做共价键。其本质是原子轨道重叠后,高概率地出现在两个原子核之间的电子与两个原子核
简述GCTMS主要特点
GC-TMS主要特点: 便携:
共价键的价键理论
价键理论是基于路易斯理论电子配对思想发展起来的共价键理论。价键理论将应用量子力学解决氢分子问题的成果推广到其他共价化合物中,成功解释了许多分子的结构问题。海特勒-伦敦法沃尔特·海特勒(W.H.Heitler)和弗里茨·伦敦(F.London)在运用量子力学方法处理氢气分子的过程中,得到了分子能量E和
共价键的结构和本质
共价键(covalent bond),是化学键的一种,两个或多个原子共同使用它们的外层电子,在理想情况下达到电子饱和的状态,由此组成比较稳定的化学结构,像这样由几个相邻原子通过共用电子并与共用电子之间形成的一种强烈作用叫做共价键。其本质是原子轨道重叠后,高概率地出现在两个原子核之间的电子与两个原子核
简述螺旋压榨机的主要特点
1、螺旋压榨机的主要特点—采用无轴螺旋、与物料接触面小,摩擦力低,可以提高挤压效率。并且无堵塞,无缠绕现象; 2、螺旋压榨机的主要特点—设备采用不锈钢制造,强度大,耐腐蚀性好,使用寿命长; 3、螺旋压榨机的主要特点—驱动装置采用轴装直接驱动方式,运行平稳可靠,能耗省; 4、螺旋压榨机的主要
共价键电子偏向分类
1、极性共价键(polar bond)在化合物分子中,不同种原子形成的共价键,由于两个原子吸引电子的能力不同,电子云偏向吸引电子能力较强的原子一方,因而吸引电子能力较弱的原子一方相对的显正电性。这样的共价键叫做极性共价键,简称极性键。形成共价键时,由于电子云的偏离程度不同,极性键又有“强极性键”和“
简述兆欧表的主要特点
1.输出功率大、带载能力强,抗干扰能力强。 2.本表外壳由高强度铝合金组成,机内设有等电位保护环和四阶有源低通滤波器,对外界工频及强电磁场可起到有效的屏蔽作用。对容性试品测量由于输出短路电流大于1.6mA,很容易使测试电压迅速上升到输出电压的额定值。对于低阻值测量由于采用比例法设计故电压下落并
简述沥青快速抽提仪的主要特点
一、沥青快速抽提仪的主要特点: 1、使用洗净室和旋转筛桶洗提沥青 2、使用高性能离心分离机分离填充料、沥青和溶剂 3、加上蒸馏单元,可以分离沥青和溶剂 4、干燥矿粉和填充料,反复利用溶剂 二、沥青抽提仪技术参数: 抽提时间(包括干燥):35分钟 每天抽提的次数::12次 每次抽提
简述ATP荧光检测仪的主要特点
1、本ATP荧光检测仪采用特殊密封性材质,提升避光性,检测结果更为精确、稳定。 2、ATP荧光检测仪界面简洁,易操作。 3、底部检测,不受仪器手持或放置角度的影响,检测数据不受干扰,结果更加稳定。 4、一体化箱式设计,为公务人员出行携带提供便利。 5、具有显著的低背景值更有利于检测痕量A
共价键的轨道杂化理论
轨道杂化理论价键理论在解释分子中各原子分布情况时,莱纳斯·鲍林(L.Pauling)提出了轨道杂化理论。理论要点有1、中心原子能量相近的不同轨道在外界的影响下会发生杂化,形成新的轨道,称杂化原子轨道,简称杂化轨道;2、杂化轨道在角度分布上,比单纯的原子轨道更为集中,因而重叠程度也更大,更加利于成键;
共价键的化学性质
化学变化的本质是旧键的断裂和新键的形成,化学反应中,共价键存在两种断裂方式,在化学反应尤其是有机化学中有重要影响。均裂与自由基反应共价键在发生均裂时,成键电子平均分给两个原子(团),均裂产生的带单电子的原子(团)称为自由基,用“R·”表示,自由基具有反应活性,能参与化学反应,自由基反应一般在光或热的
共价键的分子轨道理论
分子轨道理论分子轨道理论是比价键理论更精确的方法,其理论要点有1、分子中的电子不属于某个原子轨道,而属于整个分子;2、分子轨道由原子轨道线性组合而成,分子轨道数目等于组成分子轨道的原子轨道数目,其中些轨道能量降低,成为“成键轨道”另一些能量升高,成为“反键轨道”,还有一些能量不变,称“非键轨道”;
共价键的路易斯理论
路易斯理论路易斯理论,又称“八隅体规则”、“电子配对理论”是最早提出的,具有划时代意义的共价键理论,它没有量子力学基础,但因为简单易懂,也能解释大部分共价键的形成,至今依然出现在中学课本里。共用电子对理论有以下几点:1、原子最外层达到8电子时是稳定结构,化合物中的所有原子的最外层价电子数必须为8(氢
共价键的化学性质
化学变化的本质是旧键的断裂和新键的形成,化学反应中,共价键存在两种断裂方式,在化学反应尤其是有机化学中有重要影响。均裂与自由基反应共价键在发生均裂时,成键电子平均分给两个原子(团),均裂产生的带单电子的原子(团)称为自由基,用“R·”表示,自由基具有反应活性,能参与化学反应,自由基反应一般在光或热的
关于共价键的键型分类
成键的两个原子间的连线称为键轴. 按成键与键轴之间的关系,共价键的键型主要为两种: a)σ 键 σ 键特点:将成键轨道,沿着键轴旋转任意角度,图形及符号均保持不变. 即键轨道对键轴呈圆柱型对称,或键轴是n重轴。可记为“头碰头”。 b) π键 π键特点:成键轨道围绕键轴旋转180°时,图形
共价键的分子模型介绍
相比于键参数对共价键的描述,各种模型的描述显得更加直观。下表给出在分子模型中常用的颜色和对应元素。表6注:上表只是给出了常用的元素和对应颜色,与实际情况存在着一定的出入。球棍模型(Ball-and-stick models)图11 甲烷的球棍模型(左)与比例填充模型球棍模型又称“空间填充模型”,是一