简述带微区分析功能的手持式X射线荧光光谱仪
带微区分析功能的手持式X射线荧光光谱仪具有价格相对便宜、稳定性好,分析速度快、分辨率高等优点,测区面积可根据需要鉴定矿物的大小进行调整,实现原位分析。可以应用该技术测定薄膜里的元素分布情况以及鉴定铅锌矿石和钨矿石。通过研究待鉴定矿物的测量条件(分析线、能量窗口),测量方式(滤光片样品自旋)和干扰校正模型(重叠干扰基体效应),建立了铜矿石类质同象物相的鉴定方法,获取了矿物的微区原位化学成分、含量及元素赋存状态特征。该方法为铜矿物的鉴定工作提供了一种快速便捷的手段,而且为矿产综合利用工作提供了有价值的信息。......阅读全文
简述带微区分析功能的手持式X射线荧光光谱仪
带微区分析功能的手持式X射线荧光光谱仪具有价格相对便宜、稳定性好,分析速度快、分辨率高等优点,测区面积可根据需要鉴定矿物的大小进行调整,实现原位分析。可以应用该技术测定薄膜里的元素分布情况以及鉴定铅锌矿石和钨矿石。通过研究待鉴定矿物的测量条件(分析线、能量窗口),测量方式(滤光片样品自旋)和干扰校
你知道高性能微区X射线荧光光谱仪么?
高性能微区 X 射线荧光光谱仪(Micro-XRF) 高性能微区 X 射线荧光光谱仪(Micro-XRF) 是对大块样品、不均匀样品、不规则样品、甚至小件样品和包裹物进行高灵敏度的、非破坏性元素分析的首选仪器。测量结果能够提供样品的相关成分和元素分布的定性和半定量信息。 高性能微区 X 射线
简述荧光X射线测厚仪的功能
1、样品观察系统高分辨、彩色、实时CCD观察系统,标准放大倍数为30倍。50倍和100倍观察系统任选。激光辅助光自动对焦功能可变焦距控制功能和固定焦距控制功能 2、计算机系统配置IBM计算机:1.6G奔腾IV处理器,256M内存,1.44M软驱,40G硬盘,CD-ROM,鼠标,键盘,17寸彩显
简述-X-射线荧光分析技术
X 射线荧光分析技术(XRF)作为一种快速分析手段,为我国的相关部门提供了一种可行的、低成本的并且及时的检测、筛选和控制有害元素含量的有效途径。相对于其他分析方法(例如发射光谱、吸收光谱、分光光度计、色谱质谱等),XRF 具有无需对样品进行特别的化学处理,快速、方便、测量成本低等明显优势,特别适
微区X射线衍射仪
微区X射线衍射仪是一种用于物理学、化学、材料科学、考古学领域的分析仪器,于2015年1月12日启用。 技术指标 采用新一代的陶瓷X光管技术,焦斑位置稳定,衰减小,寿命长 ; 全自动可变狭缝,可以自由选择固定狭缝大小或固定测量面积模式;高精度立式测角仪,样品水平放置,最小步长及角度重复性皆为0
简述X射线荧光分析的应用
随着仪器技术和理论方法的发展,X射线荧光分析法的应用范同越来越广。在物质的成分分析上,在冶金、地质、化工、机械、石油、建筑材料等工业部门,农业和医药卫生,以及物理、化学、生物、地学、环境、天文及考古等研究部门都得到了广泛的应用:有效地用于测定薄膜的厚度和组成.如冶金镀层或金属薄片的厚度,金属腐蚀
简述X射线荧光光谱仪的应用
X射线荧光光谱仪(X-rayFluorescenceSpectrometer,简称:XRF光谱仪),是一种快速的、非破坏式的物质测量方法。X射线荧光(X-rayfluorescence,XRF)是用高能量X射线或伽玛射线轰击材料时激发出的次级X射线。这种现象被广泛用于元素分析和化学分析,特别是在
X射线荧光光谱仪X射线防护系统的故障分析
为了防止X射线泄漏,高压发生器只有在射线防护系统正常的情况下才能启动。射线防护系统正常与否,主要检查以下二部分: 1、面板的位置是否正常。X射线荧光光谱仪是一个封闭系统,面板是最外层的射线防护装置,如果有一块面板不到位,仪器就有射线泄漏的可能。因此,每块面板上都有位置接触传感器,面板没有完全合
如何正确选购手持式X射线荧光光谱仪?
X射线荧光光谱是一种常用的光谱技术,既可用于材料的组成成分分析,又可用于涂层和多层薄膜厚度的测量等。下面我们通过主要组件看看那选购时需要注意什么。(1)气氛X射线荧光光谱仪能够分析元素周期表中的大部分元素,具体而言,从钠元素(原子序数Z=11)到铀元素(原子序数Z=92)都可以利用这种技术进行检测分
如何正确选购手持式X射线荧光光谱仪
(1)气氛 X射线荧光光谱仪能够分析元素周期表中的大部分元素,具体而言,从钠元素(原子序数Z=11)到铀元素(原子序数Z=92)都可以利用这种技术进行检测分析。但是对于原子序数较低的元素(钛元素Ti,Z=22以下),空气会对检测结果产生较大影响;由低原子序数元素产生的荧光值通常更低,并且样品基体
简述X射线荧光光谱仪(XRF)的应用
可以进行固体、粉末、薄膜、液体样品及不规则样品的无标样元素的定性定量分析。主要用于金属、无机非金属等材料中化学元素的成分分析,X射线荧光光谱法XRF测试的元素范围包含有效的元素测量范围为1号元素 (Na)到92号元素(U)
X射线荧光光谱仪的物理原理简述
X射线荧光光谱仪(X-rayFluorescenceSpectrometer,简称:XRF光谱仪),是一种快速的、非破坏式的物质测量方法。X射线荧光(X-rayfluorescence,XRF)是用高能量X射线或伽玛射线轰击材料时激发出的次级X射线。这种现象被广泛用于元素分析和化学分析,特别是在金属
x射线荧光光谱仪材料辨识功能
x射线荧光光谱仪是一种快速的、非破坏式的物质测量方法。x射线荧光光谱仪检测技术的改进提高了检测速度。探测器技术及用于脉冲信号处理的电子学线路的迅速发展,在允许的死时间情况下,探测器接收光子的数量提高了1个数量级以上。 仪器是较新型X射线荧光光谱仪,具有重现性好,测量速度快,灵敏度高的特点。能
X射线荧光光谱仪原理分析
X荧光光谱仪(XRF)由激发源(X射线管)和探测系统构成。X射线管产生入射X射线(一次X射线),激发被测样品。受激发的样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。探测系统测量这些放射出来的二次X射线的能量及数量。然后,仪器软件将探测系统所收集
X射线荧光光谱仪X射线防护系统故障分析
为了防止X射线泄漏,高压发生器只有在射线防护系统正常的情况下才能启动。射线防护系统正常与否,主要检查以下二部分: 1、面板的位置是否正常。X射线荧光光谱仪是一个封闭系统,面板是最外层的射线防护装置,如果有一块面板不到位,仪器就有射线泄漏的可能。因此,每块面板上都有位置接触传感器,面板没有完全合上
X射线荧光光谱仪中X射线的由来和性质分析
X射线荧光光谱仪(XRF)由激发源(X射线管)和探测系统构成。X射线管产生入射X射线(一次X射线),激发被测样品。受激发的样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。探测系统测量这些放射出来的二次X射线的能量及数量。然后,仪器软件将探测系统所
简述质子激发X射线荧光分析的原理
基本原理是用高速质子照射样品,质子与样品中的原子发生库仑散射。原子内层电子按一定几率被撞出内壳层,留下空穴,较外层电子向这个空穴跃迁时发射出特征X 射线。用探测仪器探测和记录这些特征X 射线谱,根据特征X 射线的能量可定性地判断样品中所含元素的种类,根据谱线的强度可计算出所测元素的含量。
微区X射线光谱分析仪的分析应用
电子探针全称电子探针X 射线显微分析仪,又称微区X射线光谱分析仪,是一种利用电子束作用样品后产生的特征X射线进行微区成分分析的仪器,英文简称为EPMA。 可用来分析薄片中矿物微区的化学组成,分析对象是固体物质表面细小颗粒或微小区域,最小范围直径为1μm。除H、He、Li、Be等几个较轻元素外,
X射线荧光光谱仪X射线吸收的介绍
当X射线穿过物质时,一方面受散射作用偏离原来的传播方向,另一方面还会经受光电吸收。光电吸收效应会产生X射线荧光和俄歇吸收,散射则包含了弹性和非弹性散射作用过程。 当一单色X射线穿过均匀物体时,其初始强度将由I0衰减至出射强度Ix,X射线的衰减符合指数衰减定律: 式中,μ为质量衰减系数;ρ为样
X射线荧光光谱仪X射线的衍射介绍
相干散射与干涉现象相互作用的结果可产生X射线的衍射。X射线衍射与晶格排列密切相关,可用于研究物质的结构。 其中一种用已知波长λ的X射线来照射晶体样品,测量衍射线的角度与强度,从而推断样品的结构,这就是X射线衍射结构分析(XRD)。 另一种是让样品中发射出来的特征X射线照射晶面间距d已知的晶体
X射线荧光光谱仪X射线散射的介绍
除光电吸收外,入射光子还可与原子碰撞,在各个方向上发生散射。散射作用分为两种,即相干散射和非相干散射。 相干散射:当X射线照射到样品上时,X射线便与样品中的原子相互作用,带电的电子和原子核就跟随着X射线电磁波的周期变化的电磁场而振动。因原子核的质量比电子大得多,原子核的振动可忽略不计,主要是原
概述X射线荧光光谱仪X射线的产生
根据经典电磁理论,运动的带电粒子的运动速度发生改变时会向外辐射电磁波。实验室中常用的X射线源便是利用这一原理产生的:利用被高压加速的电子轰击金属靶,电子被金属靶所减速,便向外辐射X射线。这些X射线中既包含了连续谱线,也包括了特征谱线。 1、连续谱线 连续光谱是由高能的带电粒子撞击金属靶面时受
微-X-射线荧光-(µXRF)技术详解
微 X 射线荧光 (µXRF) 是一种元素分析技术,它允许检测非常小的样品区域。与传统的 XRF 仪器一样,微 X 射线荧光通过使用直接 X 射线激发来诱导来自样品的特性 X 射线荧光发射,以用于元素分析。与传统 XRF 不同(其典型空间分辨率的直径范围从几百微米到几毫米),µXRF 使用 X 射线
简述X射线荧光光谱仪的组成和用途
X射线管产生入射X射线(一次X射线),激发被测样品。受激发的样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。探测系统测量这些放射出来的二次X射线的能量及数量。然后,仪器软件将探测系统所收集到的信息转换成样品中各种元素的种类及含量。 组成:X
简述X射线荧光光谱仪的重要意义
X射线荧光光谱仪术属于一种能够实现快速分析的无损检测技术,新型、成本更低的X射线光谱仪更容易在被检测材料或者组件的整个生命周期内进行多元测量和验证。利用摩擦效应产生X射线的低成本、移动型X射线荧光光谱仪将会和原位检测或者实验室检测实现互补。 对于质量管理部门、冶金实验室、机械工厂、金属加工厂、
x射线荧光光谱的微区分析技术介绍
铜矿物在自然界存在形式多样,有原生带次生富集带和氧化带等,共生矿物和伴生矿物众多,各类矿物均存在类质同象或者镜下光学特征相似的现象,传统的岩矿鉴定方法利用偏光、反光显微镜或实体显微镜等设备难以鉴别,对于此类矿物的鉴别需要借助化学分析方法或微区分析技术。 微区分析技术(电子探针、同步辐射、全反射
X射线荧光光谱仪检测分析原理
X射线荧光光谱分析仪可以对各种样品的元素组成进行定量分析,包括压片、融珠、粉末液体、甚至是庞大的样品。它使用一种高功率X射线管达到了检测限低和测量时间短的效果。具有重现性好,测量速度快,灵敏度高的特点。 X射线荧光光谱分析仪物理原理 当材料暴露在短波长X光检查,或伽马射线,其组成原子可能发生
X-射线荧光光谱仪
用X射线照射试样时,试样可以被激发出各种波长的荧光X射线,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析,为此使用的仪器叫X射线荧光光谱仪。由于X光具有一定波长,同时又有一定能量,因此,X射线荧光光谱仪有两种基本类型:波长色散型和能量色散型。图
简述X射线荧光分析仪的产品特点
1、在测定微量成分时,由于X射线管的连续X射线所产生的散射线会产生较大的背景,致使目标峰的观测比较困难。为了降低或消除背景和特征谱线等的散射X射线对高灵敏度分析的影响,此荧光分析仪配置了4种可自动切换的滤光片,有效地降低了背景和散射X射线的干扰,调整出最具感度的辐射,进一步提高了S/N的比值,从
简述X射线荧光分析的基本原理
荧光,顾名思义就是在光的照射下发出的光。X射线荧光就是被分析样品在X射线照射下发出的X射线,它包含了被分析样品化学组成的信息,通过对上述X射线荧光的分析确定被测样品中各组份含量的仪器就是X射线荧光分析仪。 从原子物理学的知识我们知道,对每一种化学元素的原子来说,都有其特定的能级结构,其核外电子