Antpedia LOGO WIKI资讯

具有能量转移作用机制的手性催化人工光酶诞生

近日,华中科技大学化学与化工学院教授钟芳锐、吴钰周团队与西北大学教授陈希合作,利用合成生物学前沿技术对蛋白进行化学改造,引入了自然界不存在的光催化剂,创造了世界上首个具有能量转移作用机制的手性催化人工光酶。 日前,相关研究成果在《自然》刊发。吴钰周、钟芳锐和陈希为本文的共同通讯作者,华科大化学与化工学院博士生孙宁宁和黄建建为共同第一作者,华科大学为该论文的第一作者单位。 酶作为一种具有生物催化作用的蛋白质,几乎所有的生命活动都需要它的参与,日常生活中更是随处可见。如洗衣服主要靠酶实现去污;奶酪靠加入凝乳酶来使牛奶凝结等。然而,这些酶是自然界中本来就有的,能够作用的对象也都是天然的油脂、淀粉、蛋白质等。在生产生活中,更多的合成化学品,如各种合成新材料、化学药品等,都无法通过酶来生产,也不能够被酶降解。 随着人们对生态环境和绿色可持续发展的重视,用更加贴进自然的酶来加工合成化学品、替代传统的高污染高能耗的化学生产方式,正在......阅读全文

具有能量转移作用机制的手性催化人工光酶诞生

  近日,华中科技大学化学与化工学院教授钟芳锐、吴钰周团队与西北大学教授陈希合作,利用合成生物学前沿技术对蛋白进行化学改造,引入了自然界不存在的光催化剂,创造了世界上首个具有能量转移作用机制的手性催化人工光酶。  日前,相关研究成果在《自然》刊发。吴钰周、钟芳锐和陈希为本文的共同通讯作者,华科大化学

具有能量转移作用机制的手性催化人工光酶诞生

近日,华中科技大学化学与化工学院教授钟芳锐、吴钰周团队与西北大学教授陈希合作,利用合成生物学前沿技术对蛋白进行化学改造,引入了自然界不存在的光催化剂,创造了世界上首个具有能量转移作用机制的手性催化人工光酶。 日前,相关研究成果在《自然》刊发。吴钰周、钟芳锐和陈希为本文的共同通讯作者,华科大化学与

我国科研团队人工光酶研究取得新突破

9月22日,记者从华中科技大学获悉,该校化学与化工学院钟芳锐、吴钰周教授团队与西北大学陈希教授合作的研究论文,日前在《自然》刊发。该研究原创性提出了一种“三重态光酶”新概念,团队通过合成生物学前沿技术开发了一类全新人工酶生物催化剂,融合化学合成的非天然反应性和生物合成的精准高效性两方面优势,为医药、

荧光共振能量转移(FRET)

一、活细胞研究遇到的问题:蛋白质或其他分子在活细胞内互相结合的时间和地点是了解它们功能的关键问题。要回答这一问题,需将蛋白质标上不同的荧光团。但是,光学显微镜的分辨率将蛋白质检测精度限制在大约0.2μm左右。要研究蛋白质成分的相互物理作用,需要高的分辨率。二、什么是FRET?FRET就是采用非放射方

荧光共振能量转移的特点

当一个荧光分子(又称为供体分子)的荧光光谱与另一个荧光分子(又称为受体分子) 的激发光谱相重叠时, 供体荧光分子的激发能诱发受体分子发出荧光, 同时供体荧光分子自身的荧光强度衰减。FRET 程度与供、受体分子的空间距离紧密相关, 一般为7~10 nm 时即可发生FRET; 随着距离延长, FRET呈

荧光共振能量转移的简介

  当一个荧光分子(又称为供体分子)的荧光光谱与另一个荧光分子(又称为受体分子) 的激发光谱相重叠时, 供体荧光分子的激发能诱发受体分子发出荧光, 同时供体荧光分子自身的荧光强度衰减。FRET 程度与供、受体分子的空间距离紧密相关, 一般为7~10 nm 时即可发生FRET; 随着距离延长, FRE

荧光共振能量转移发生原理

荧光共振能量转移是指在两个不同的荧光基团中,如果一个荧光基团(供体 Donor)的发射光谱与另一个基团(受体 Acceptor)的吸收光谱有一定的重叠,当这两个荧光基团间的距离合适时(一般小于100Å),就可观察到荧光能量由供体向受体转移的现象,即以前一种基团的激发波长激发时,可观察到后一个基团发射

测量生物发光共振能量转移

fff简介分子之间的能量转移大多是由辐射导致的。然而当不同荧光物质非常靠近时(

测量生物发光共振能量转移

fff简介分子之间的能量转移大多是由辐射导致的。然而当不同荧光物质非常靠近时(

荧光共振能量转移发生条件

能量供给体-接受体(D–A)对之间发生有效能量转移的条件是苛刻的,主要包括:(1)能量供体的发射光谱与能量受体的吸收光谱必须重叠;(2)能量供体与能量受体的荧光生色团必须以适当的方式排列;(3)能量供体、能量受体之间必须足够接近,这样发生能量转移的几率才会高。此外,对于合适的供体、受体分子在量子产率

何为荧光共振能量转移技术

一、FRET技术基本原理荧光共振能量转移是指两个荧光发色基团在足够靠近时,当供体分子吸收一定频率的光子后被激发到更高的电子能态,在该电子回到基态前,通过偶极子相互作用,实现了能量向邻近的受体分子转移(即发生能量共振转移)。FRET是一种非辐射能量跃迁,通过分子间的电偶极相互作用,将供体激发态能量转移

荧光共振能量转移的发生原理

  荧光共振能量转移是指在两个不同的荧光基团中,如果一个荧光基团(供体 Donor)的发射光谱与另一个基团(受体 Acceptor)的吸收光谱有一定的重叠,当这两个荧光基团间的距离合适时(一般小于100Å),就可观察到荧光能量由供体向受体转移的现象,即以前一种基团的激发波长激发时,可观察到后一个基团

研究揭示手性选择能量转移的秘密

中国科学技术大学合肥微尺度物质科学国家研究中心教授张国庆团队揭示了在分子尺度下,“用左手性分子把能量传递给左手性分子,或者用右手性分子把能量传递给右手性分子”这种同手性分子能量转移的效率,要远高于“用左手性分子把能量传递给右手性分子,或者用右手性分子传递给左手性分子”的奇特现象,并为高效的手性识别提

荧光共振能量转移的发生条件介绍

  能量供给体-接受体(D–A)对之间发生有效能量转移的条件是苛刻的,主要包括:(1)能量供体的发射光谱与能量受体的吸收光谱必须重叠;(2)能量供体与能量受体的荧光生色团必须以适当的方式排列;(3)能量供体、能量受体之间必须足够接近,这样发生能量转移的几率才会高。此外,对于合适的供体、受体分子在量子

什么是人工酶?

人工酶是一种合成的,有机分子或离子的是重新创建的酶的一些功能。该区域有望以许多酶中观察到的速率和选择性进行催化。

研究实现低毒性量子点电子转移与能量转移光催化

近日,中科院大连化学物理研究所研究员吴凯丰团队在量子点电荷/能量转移与光催化研究中取得新进展,实现了一类低毒性量子点作为强还原剂和三线态敏化剂的有机光催化应用。相关研究成果发表在《德国应用化学》上。 光诱导电荷/能量转移被广泛应用于各类有机催化反应。常见的光敏剂主要是吸收可见光的有机分子或过渡金

能量运输的关键-ATP酶与GTP酶

ATP与ATP酶:ATP酶,又称为三磷酸腺苷酶,是一类能将三磷酸腺苷(ATP)催化水解为二磷酸腺苷(ADP)和磷酸根离子的酶,这是一个释放能量的反应。在大多数情况下,能量可以通过传递而被用于驱动另一个需要能量的化学反应。这一过程被所有已知的生命形式广泛利用。部分ATP酶是内在膜蛋白(Integral

转移核糖核酸的人工合成

人工合成:1981年,中国科学家王德宝等用化学和酶促合成相结合的方法首次全合成了酵母丙氨酸tRNA。它由76个核苷酸组成,其中包括天然分子中的全部修饰成分,产物具与天然分子相似的生物活性(见核糖核酸和核酸人工合成)。

大连化物所实现低毒性量子点电子转移与能量转移光催化

  近日,中科院大连化物所光电材料动力学研究组(1121组)吴凯丰研究员团队在量子点电荷/能量转移与光催化研究中取得新进展,实现了一类低毒性量子点作为强还原剂和三线态敏化剂的有机光催化应用。  光诱导电荷/能量转移被广泛应用于各类有机催化反应。常见的光敏剂主要是吸收可见光的有机分子或过渡金属(例如钌

转移酶的命名

  转移酶是以“(供体)(受体)(官能团)转移酶”的格式来命名。但是,亦有一些其他格式而普遍的名称:“(受体)(官能团)转移酶”或“(供体)(官能团)转移酶”,例如DNA甲基转移酶就是一种能催化甲基转移至脱氧核糖核酸(DNA)受体的转移酶。

可逆的人工金属酶组装——人工金属酶的回收利用

  人工金属酶的发展是一个迅速扩大的领域,其设计策略为从天然金属酶的改性到完全从头设计。其中,将合成催化剂附着在蛋白质支架上的锚定策略已引起广泛关注,因为它能够在生物相容和选择性蛋白质环境中发挥有机金属催化剂的活性。为使模块化设计的人工酶发挥最大应用潜力,需要强而可逆的锚定过程,该锚定过程能够控制组

揭示量子点能量转移光催化新机制

近日,中科院大连化学物理研究所研究员吴凯丰团队在量子点能量转移与光催化研究中取得新进展。团队揭示了一种基于铅卤钙钛矿量子点三线态传能敏化有机分子异构化及环加成的新路径,并且获得了较高的量子效率和转化率。相关研究成果发表在《德国应用化学》,并受到三位审稿人的一致高度评价,被期刊选为VIP(Ver

膜蛋白界面振动能量转移研究取得进展

  中国科学技术大学合肥微尺度物质科学国家实验室、量子创新研究院、化学物理系罗毅教授研究团队研究员叶树集小组在膜蛋白界面振动能量转移方面取得进展。该小组揭示了生物膜界面蛋白质酰胺键骨架振动的能量转移速率与途径,研究成果以Ultrafast Vibrational Dynamics of Membra

三色荧光级联荧光共振能量转移技术

荧光共振能量转移(fluorescence resonance energytransfer,FRET),是指能量从一种受激发的荧光基团(fluorophore)以非辐射的方式转移到另一种荧光基团的物理现象.FRET的能量转移效率是两个荧光基团间距离的函数,并对此距离十分敏感,它的有效响应距离一

小卫星大能量,理想在星辰大海发着光

“瓢虫一号”在轨效果图   卫星使用九天微星自主研发的姿控系统,与合作伙伴提供的姿态测量和执行部件形成整体。无论是对地凝视,还是对日、对地各种姿态变化和保持,都执行得非常完美,最终保证闪烁任务的圆满完成。   闹元宵,赏花灯,猜灯谜。刚刚过去的元宵节,故宫灯会惊艳了世人,一则来自太空的灯谜

乙酰转移酶的简介

  乙酰转移酶,细胞分裂S期,组蛋白H3上第56位赖氨酸(H3-K56)发生乙酰化。H3-K56乙酰化作用重大,失败会导致细胞对引发DNA损伤的条件非常敏感。尽管如此,但科学家一直没有找到组蛋白乙酰转移酶(histone acetyltransferase,HAT)催化球形H3-K56乙酰化的科学证

组蛋白乙酰转移酶

组蛋白乙酰转移酶根据底物性质的不同可以分为两个家族, GNAT 家族(GCN5-related nacetyltrans-ferases family) 和 MYST(MOZ、Ybf2/Sas3、Sas2 和Tip60)家族 。虽然二者都含有乙酰辅酶 A 同源序列, 但是其核心区域存在差异。在功能上

中国科大发现手性选择能量转移奇特现象

原文地址:http://news.sciencenet.cn/htmlnews/2023/3/497161.shtm 中新网合肥3月27日电 (记者 吴兰)“用左手把能量传递给左手”与“用左手把能量传给右手”哪个效率更高? 这种在分子尺度下的奇特现象的比较结果近日由中国科学技术大学研究团队破

我国学者实现高效三线态能量转移

  电子与能量转移过程广泛存在于自然界、生命体系和光电器件中。自然界高效的捕光和能量转移过程启发人们不断进行仿生工作的探索。迄今为止,单线态能量转移研究已经获得了很大进展,然而三线态能量转移的效率和速率仍然较低。开发高效三线态能量转移体系对提高电致发光器件效率、磷光传感与成像、以及理解光合作用的三线

转移酶的基本信息

(一)能够催化除氢以外的各种化学功能团(官能团)从一种底物转移到另一种底物的酶类。例如转甲基酶、转氨酶、己糖激酶、磷酸化酶等。(二)在蛋白质合成中起肽链延伸作用的二种蛋白质之一,即延伸因子G(elongation factor G)。