影响原子发射光谱的因素介绍
1、谱线强度 原子由某一激发态i 向低能级 j 跃迁,所发射的谱线强度与激发态原子数成正比。 在热力学平衡时,单位体积的基态原子数N0与激发态原子数Ni的之间的分布遵守玻耳兹曼分布定律: gi 、g0为激发态与基态的统计权重; Ei :为激发能;k为玻耳兹曼常数;T为激发温度; 发射谱线强度: 影响谱线强度的因素: ⑴激发能越小,谱线强度越强; ⑵温度升高,谱线强度增大,但易电离。 2、自吸自蚀 等离子体:以气态形式存在的包含分子、离子、电子等粒子的整体电中性集合体。等离子体内温度和原子浓度的分布不均匀,中间的温度、激发态原子浓度高,边缘反之。 自吸:中心发射的辐射被边缘的同种基态原子吸收,使辐射强度降低的现象。 自蚀:元素浓度低时,不出现自吸。随浓度增加,自吸越严重,当达到一定值时,谱线中心完全吸收,如同出现两条线,这种现象称为自蚀。......阅读全文
影响原子发射光谱的因素介绍
1、谱线强度 原子由某一激发态i 向低能级 j 跃迁,所发射的谱线强度与激发态原子数成正比。 在热力学平衡时,单位体积的基态原子数N0与激发态原子数Ni的之间的分布遵守玻耳兹曼分布定律: gi 、g0为激发态与基态的统计权重; Ei :为激发能;k为玻耳兹曼常数;T为激发温度; 发射谱线
关于原子发射光谱的介绍
原子发射光谱法(Atomic Emission Spectrometry,AES),是利用物质在热激发或电激发下,每种元素的原子或离子发射特征光谱来判断物质的组成,而进行元素的定性与定量分析的。原子发射光谱法可对约70种元素(金属元素及磷、硅、砷、碳、硼等非金属元素)进行分析。在一般情况下,用于
影响原子吸收线的因素有哪些
① 自然宽度:原子吸收线的自然宽度与激发态的平均寿命有关,激发态的原子寿命越长,则吸收线的自然宽度越窄,其平均寿命约为10-8s数量级,一般来说,其自然宽度为10-5nm数量级; ② 多普勒变宽:是由于原子无规则的热运动而产生的,故又称为热变宽。多普勒变宽随着原子与光源相对运动的方向而变化,基
影响原子吸收光谱原子化效率的因素
原子化效率是决定原子吸收光谱分析灵敏度的一个主要因素,通常,原子化效率fa 用火焰中某元素的自由原子数No与该元素在火焰中的不同形态(原子、离子、化合物、 激发态等)组成的原子总数N的比值定义 fa=No/N 由于不同元素的反应能力不同,在火焰中形成稳定化合物或产生自由原子的速度不同, 即
原子发射光谱
原子吸收光谱法是本世纪50年代中期出现并在以后逐渐发展起来的一种新型的仪器分析方法,这种方法根据蒸气相中被测元素的基态原子对其原子共振辐射的吸收强度来测定试样中被测元素的含量。它在地质、冶金、机械、化工、农业、食品、轻工、生物医药、环境保护、材料科学等各个领域有广泛的应用。
原子发射光谱
原子发射光谱法,是利用物质在热激发或电激发下,每种元素的原子或离子发射特征光谱来判断物质的组成,而进行元素的定性与定量分析的。原子发射光谱法可对约70种元素(金属元素及磷、硅、砷、碳、硼等非金属元素)进行分析。在一般情况下,用于1%以下含量的组份测定,检出限可达ppm,精密度为±10%左右,线性范围
原子发射光谱的基本信息介绍
原子发射光谱法,是指利用被激发原子发出的辐射线形成的光谱与标准光谱比较,识别物质中含有何种物质的分析方法。用电弧、火花等为激发源,使气态原子或离子受激发后发射出紫外和可见区域的辐射。某种元素原子只能产生某些波长的谱线,根据光谱图中是否出现某些特征谱线,可判断是否存在某种元素。根据特征谱线的强度,
原子发射光谱法的基本介绍
原子发射光谱法,是指利用被激发原子发出的辐射线形成的光谱与标准光谱比较,识别物质中含有何种物质的分析方法。用电弧、火花等为激发源,使气态原子或离子受激发后发射出紫外和可见区域的辐射。某种元素原子只能产生某些波长的谱线,根据光谱图中是否出现某些特征谱线,可判断是否存在某种元素。根据特征谱线的强度,
关于原子发射光谱的发展历程介绍
1859年,基尔霍夫(Kirchhoff G R)、本生(Bunsen R W)研制第一台用于光谱分析的分光镜,实现了光谱检验;1930年以后,建立了光谱定量分析方法;原子光谱——原子结构——原子结构理论——新元素在原子吸收光谱分析法建立后,其在分析化学中的作用下降。
影响景深的因素介绍
1、光圈越大(光圈值f越小)景深越浅,光圈越小(光圈值f越大)景深越深。2、镜头焦距越长景深越浅、反之景深越深。3、主体越近,景深越浅,主体越远,景深越深。
影响宿主的因素介绍
1.遗传背景宿主的遗传背景对抗原的免疫原性有明显影响。机体对抗原的应答能力受多种遗传基因尤其是主要组织相容性复合体(MHC)的控制。不同遗传背景的小鼠及人群中的不同个体,由于MHC基因不同,湿示对同一抗原的应答能力不同。对某一抗原反应性强的小鼠品系或人,对其他抗原可能呈低反应性。MHC基因及其他免疫
原子发射光谱的概念
原子发射光谱(AES):原子发射光谱法,是根据每种化学元素的原子或离子在热激发或电激发下,从激发态回到基态时发射的特征谱线,进行元素定性、半定量和定量分析的方法。它是光学分析中产生与发展最早的一种分析方法,却也是原子光谱技术研究中较为薄弱的一个部分。
原子发射光谱的产生
根据原子的特征发射光谱来研究物质的结构和测定物质的化学成分的方法称为“原子发射光谱分析”。原子发射光谱法是光学分析法中产生与发展zui早的一种。 原子发射光谱法是利用物质在热激发或电激发下,每种元素的原子或离子发射特征光谱来判断物质的组成,而进行元素的定性与定量分析的方法。发射光谱通常用化学火焰
影响原子吸收光谱仪测量的因素
原子吸收光谱仪分析中影响测量条件的可变因素多,在测量同种样品的各种测量条件不同时,对测定结果的准确度和灵敏度影响很大。选择最适的工作条件,能有效地消除干扰因素。 1、吸收线选择 为了获得较高的灵敏度、稳定性和宽的线性范围及无干扰测定,需选择合适的吸收线。 2、光路准直 在分析之前,
影响原子吸收吸光度大小的因素有哪些
光源强度,PMT的放大倍数,光路衰减小,原子化效率
影响石墨炉原子吸收实验结果的几个因素
石墨炉原子吸收光谱法的质量控制是一个复杂的过程。由于仪器设备运行状态不佳,分析者的操作不熟练,测量时周围环境的变化,以及纯水、试剂、电源的稳定性等因素的影响,都会使分析结果产生误差。 1、化学试剂和实验用水的选择选择化学试剂和实验用水是做好原子吸收光谱法的良好开端。分析测定时,试剂空白的大
影响原子吸收测定的4个因素是什么
1、光谱线的选择2、火焰的选择3、雾化效果4、狭缝的选择
影响原子吸收谱线变宽的因素有哪些
原子吸收谱线变宽有多种因素影响:1多普勒变宽:由于原子在空间作无规则热运动所导致的。2压力变宽:由于吸光原子与蒸汽中原子或分子相互碰撞而引起的能级稍微变化,使发射或吸收光量子频率改变而导致的谱线变宽。还有其它因素如:强电场和磁场引致变宽,自吸效应等。一、多普勒变宽多普勒宽度是由于原子热运动引起的。从
火焰原子吸收法测定铁含量的影响因素
影响铁、锰原子吸收法准确度的主要干扰是化学干扰。当硅的浓度大于20 mg/L时,对铁的测定产生负干扰,当硅的浓度大于50 mg/L时,对锰的测定也出现负干扰。这些干扰的程度随着硅浓度的增加而増加。如试样中存在200 mg/L氯化钙时,上述干扰可以消除。一般来说,铁、锰的火焰原子吸收分析法基体干扰不太
原子发射光谱、原子吸收光谱
原子吸收光谱是原子发射光谱的逆过程。基态原子只能吸收频率为ν=(Eq-E0)/h的光,跃迁到高能态Eq。因此,原子吸收光谱的谱线也取决于元素的原子结构,每一种元素都有其特征的吸收光谱线。 原 子的电子从基态激发到最接近于基态的激发态,称为共振激发。当电子从共振激发态跃迁回基态时,称为共振跃迁。
自溶的影响因素介绍
尸体自溶的发生和发展同样要受到各种因素的影响。首先,周围环境的温度可以影响自溶的速度。一般来说,较高的温度可以促进组织自溶,而较低的温度则可以延缓尸体自溶。所以,衣着多的尸体较之于裸露的尸体,其自溶速度要快些;冷藏的尸体,其自溶速度变慢或停止。其次,死者的死因对尸体自溶速度也有影响。由于急速死者的身
影响细胞生长的因素介绍
细胞生长受温度、渗透压等外界因素的影响。温度一般哺乳类及禽类细胞体外培养的适宜温度是37~38℃。温度过高或过低都会影响到细胞的生长。细胞耐受低温的能力比抗热的能力强,在低温下,细胞的代谢活力及核分裂降低。温度不低于0℃时,虽影响细胞代谢,但并无伤害作用;把细胞置于25~35℃时,细胞仍能生存和生长
反应方向的影响因素介绍
焓变化学反应中所吸收或放出的能量有多种形式:热能、光能、声能和电能等。其中所吸收或放出的热量称为反应热(或热效应)。众所周知,反应热不仅与反应物的组成、结构、和性质有关,而且与其状态和用量,以及反应条件(如温度和压力等)有关,热力学上将反应前后温度和压力都不变的反应称为恒温恒压反应。例如,人体内进行
影响细胞分化的因素介绍
细胞分化受到很大内外因素的影响,如细胞自身的极性、体内激素和某些特定化学成分,以及相对应的空间位置和环境中的光照、温度、压力、水分等都可能在一定程度上影响生物体内的细胞分化。例如,无尾两栖类的蝌蚪变态过程中起重要作用的甲状腺素和昆虫变态过程中的2一羟蜕皮素及保幼素等激素,都由它们的内分泌腺释放,从而
影响糖耐量实验的因素介绍
1. 饮食。试验前每天碳水化合物摄入量应≥150g。过分限制饮食可使糖耐量减低而出现假阳性。另外,烟、酒、咖啡、茶等对其也有一定影响。 2. 体力活动。试验前应有正常的体力活动至少3天,若试验前剧烈运动可使交感神经兴奋。儿茶酚胺等释放,使血糖升高。长期卧床可使糖耐量受损。 3. 应激因素。如
影响亲和色谱的因素介绍
1、上样体积 若目标产物与配基的结合作用较强,上样体积对亲和色谱效果影响较小。若二者间结合力较弱,样品浓度要高一些,上样量不要超过色谱柱载量的5%~10%。(这个载量是指色谱柱所吸附的配体的量) 2、柱长 亲和柱的长度需要根据亲和介质的性质确定。如果亲和介质的载量高,与目标产物(目标物)的
α螺旋的影响因素相关介绍
α-螺旋靠氢键维持稳定 影响因素 1. Pro(及Hpro)使α-螺旋中断,产生“结节”。Pro的α-碳原子参与吡咯环的形成,使α-碳原子—N键不能旋转,Gly绕α-碳原子的自由度更大,所以大多α-螺旋起始或中止于Gly,还有Tyr和Ser等。 2.侧链较大的氨基酸相邻时影响生成两个“α-
引物设计的影响因素介绍
最佳区域DNA序列的保守区是通过物种间相似序列的比较确定的。在NCBI上搜索不同物种的同一基因,通过序列分析软件(比如DNAman)比对(Alignment),各基因相同的序列就是该基因的保守区。长度引物长度(primer length)常用的是18-27 bp,但不应大于38,因为过长会导致其延伸
影响酶活力的因素介绍
酶活力可受多种因素的调节控制,从而使生物体能适应外界条件的变化,维持生命活动。没有酶的参与,新陈代谢几乎不可能维持。酶的活性指标采用酶活力单位(由米式方程可知:酶促反应速度受酶浓度和底物浓度的影响,也受温度、pH、激活剂和抑制剂的影响。(1)酶浓度从米式方程和酶浓度与酶促反应速度的关系图解可以看出:
影响酶活的因素介绍
酶是一种生物催化剂,与其它蛋白质一样对温度、湿度、压力等因素比较敏感(Guus等,2000)。制粒膨化过程中的温度可达100~200℃,并伴有高湿(引起饲料中较高的水分活度)、高压(改变酶蛋白的空间多维结构而变性),在该条件下,大多数酶制剂的活性都将受到不同程度的影响。 2.1温度 温度对酶活性