火焰原子吸收法测定铁含量的影响因素
影响铁、锰原子吸收法准确度的主要干扰是化学干扰。当硅的浓度大于20 mg/L时,对铁的测定产生负干扰,当硅的浓度大于50 mg/L时,对锰的测定也出现负干扰。这些干扰的程度随着硅浓度的增加而増加。如试样中存在200 mg/L氯化钙时,上述干扰可以消除。一般来说,铁、锰的火焰原子吸收分析法基体干扰不太严重,由分子吸收或光散射造成的背景吸收也可忽略。但对于含盐量高的工业废水,则应注意基体干扰和背景校正。此外,铁、锰的光谱线较复杂,例如,在Fe线248.3 nm附近还有248.8 nm线;在Mn线279.5 nm附近还有279.8 nm和280.1 nm线,为克服光谱干扰,应选择最小的狭缝或光谱通带。......阅读全文
火焰原子吸收法测定铁含量的影响因素
影响铁、锰原子吸收法准确度的主要干扰是化学干扰。当硅的浓度大于20 mg/L时,对铁的测定产生负干扰,当硅的浓度大于50 mg/L时,对锰的测定也出现负干扰。这些干扰的程度随着硅浓度的增加而増加。如试样中存在200 mg/L氯化钙时,上述干扰可以消除。一般来说,铁、锰的火焰原子吸收分析法基体干扰不太
火焰原子吸收法测定铁含量的方法
原子吸收法和等离子发射光谱法操作简单、快速,结果的精密度、准确度好,适用于环境水样和废水样中铁的分析;邻菲啰啉光度法灵敏、可靠,适用于清洁环境水样和轻度污染水的分析;污染严重,含铁量高的废水,可用EDTA络合滴定法以避兔高倍数稀释操作引起的误差。测总铁,在采样后立刻用盐酸酸化至pH
火焰原子吸收法测定铁含量的结果分析
计算式中:m——校准曲线查得铁、锰量(μg);V——水样体积(ml)。精密度和准确度用1%盐酸配制含铁2.00 mg/L、锰1.04 mg/L的统一样品,经13个实验室分析,铁、锰室内相对标准偏差为0.86%和0.85%;室间相对标准偏差为2.64%和1.88%;相对误差为+0.18%和-12.5%
火焰原子吸收法测定铁含量的操作步骤
操作步骤(1)样品预处理对于没有杂质堵塞仪器吸样管的清澈水样,可直接喷入火焰进行测定。如测总量或含有机质较高的水样时,必须进行消解处理。处理时先将水样摇匀,分取适量水样置于烧杯中,每100 ml水样加5 ml酸,置于电热板上在近沸状态下将样品蒸至近干。冷却后,重复上述操作一次。以(1+1)盐酸3 m
火焰原子吸收法测定铁含量的方法原理
在空气-乙炔火焰中,铁、锰的化合物易于原子化,可分別于波长248.3 nm和279.5 nm处,测量铁、锰基态原子对铁、锰空心阴极灯特征辐射的吸收进行定量。
火焰原子吸收法测定铁含量的适用范围
本法的铁、锰检出浓度分別是0.03 mg/L和0.01 mg/L,测定上限分别为5.0 mg/L和3.0 mg/L。本法适用于地表水、地下水及化工、治金、轻工、机械等工业废水中铁、锰的测定。
火焰原子吸收法测定铁含量的注意事项
①各种型号的仪器,测定条件不尽相同,因此,应根据仪器使用说明书选择合适条件。②当样品的无机盐含量高时,采用塞曼效应扣除背景,无此条件时,也可采用邻近吸收线法扣除背景吸收。在测定浓度容许条件下,也可采用稀释方法以减少背景吸收。③硫酸浓度较高时易产生分子吸收,以采用盐酸或硝酸介质为好。④铁和锰都是多谱线
火焰原子吸收法测定样本锑含量的干扰因素
试液中存在的一般阴、阳离子不干扰锑的测定,试液中存在低于20%盐酸或硝酸也无影响,只有硫酸浓度大于2%,对锑的吸收信号有抑制作用。在波长217.6 nm测量锑,大量铜和铅有光谱干扰,使吸收信号增加。为此,可选择较小的光谱通带予以克服。铜的浓度小于20 mg/L,铅的浓度小于10 0mg/L没有干扰。
火焰原子吸收法测定铁含量的仪器和试剂选择
仪器①原子吸收分光光度计;②铁、锰心阴极灯;③乙炔钢瓶或乙炔发生器;④空气压缩机,应各有除水、除油装置;仪器工作条件:不同型号仪器的最佳测试条件不同,可由各实验室自己选择,表1 的测试条件供参考。试剂①铁标准贮备液:准确称取光谱纯金属铁1.000 g,用60 ml(1+1)硝酸溶解完全后,加10 m
火焰原子吸收光度法测定样本镍含量的干扰因素
测定5 μg/ml镍时,下列离子均无明显干扰:硫酸根5000 μg/ml;钙(Ⅱ)、镁(Ⅱ)、铜(Ⅱ)、铬(Ⅲ)、锰(Ⅱ)、铁(Ⅲ)、镉(Ⅱ)、钾(I)、硅酸根、氟离子各1000 μg/ml;铅(Ⅱ)、锌Ⅱ)、磷酸根各500 μg/ml;银(I)、锡(Ⅱ)、锑(III)各100 μg/ml。使用23
原子吸收法测定铁元素的含量
用原子吸收光谱法测定铁的含量的方法: 每种元素的原子能够吸收特定波长的光能,而吸收的能量值与该光路中该元素的原子数目成正比。用特定波长的光照射这些原子,测量该波长的光被吸收的量,与标准溶液制成的效正曲线对比,求出被测元素的含量。 原子吸收光谱(AtomicAbsorptionSpectrosco
火焰原子吸收法测定燃料油中金属钙铁镁含量
1 前言 回炼用燃料油中含有大量的钙、铁、镁等金属元素,燃料油在使用过程中金属元素对设备有一定的腐蚀,并且易形成大量盐类物质沉积在设备上,影响设备的使用效率和使用寿命,严重时将导致事故的发生。燃料油的采购途径比较广,各个厂家提供的燃料油中的金属含量各不相同,为了严格控制进入回炼装置的燃料油中
间接火焰原子吸收法测定样本铝含量的干扰因素介绍
K+、Na+(各10 mg),Ca2+、Mg2+、Fe2+(各200 μg),Cr3+(125 μg),Zn2+、Mn2+、Mo6+(各50 μg),PO43-、Cl-、NO3-、SO42-(各1 mg)不干扰20 μgAl的测定。Cr6+超过125 μg稍有干扰,Cu2+、Ni2+干扰严重,但在加
火焰原子吸收法测定钠钾含量的干扰因素及消除办法
干扰及消除在高温火焰中,钾和钠易发生电离而产生电离干扰。可在分析试样中加入一定量更易电离的铯盐1000~2000 mg/L,作消电离剂予以消除。由于铯盐难以购得纯品,亦可用锶盐代替。无机酸对钾和钠的测定有影响,硝酸大于8%,硫酸大于2%时,吸光度均偏低,盐酸和高氯酸随酸量增加使吸光度明显下降,因此应
火焰原子吸收光谱法测定铁,基体铝有影响吗
火焰原子吸收光谱法的特点:灵敏度高、抗干扰能力强、精密度高、选择性好、仪器简单、操作方便。仪器从光源辐射出具有待测元素特征谱线的光,通过试样蒸气时被蒸气中待测元素基态原子所吸收,由辐射特征谱线光被减弱的程度来测定试样中待测元素的含量。火焰原子吸收光谱仪可测定多种元素,火焰原子吸收光谱法可测到(10)
火焰原子吸收法测定牛奶中钙含量
食品中钙的测定方法,国家标准GBT5009192-2003中主要采用原子吸收分光光度法和滴定法,但样品均需消化处理。由于牛奶中蛋白质、钙含量较高,消化处理时较繁琐。本实验尝试牛奶及含乳饮料样品不经消化处理,直接用氧化镧溶液定容,火焰原子吸收分光光度法测定,取得较满意的实验结果,精确度、准确度较
火焰原子吸收法测定样本锑含量的方法原理
锑的化合物在微富燃的空气-乙炔火焰中原子化具有较好的灵敏度,用火焰中锑的基态原子,对其空心阴极灯发射的特征谱线217.6 nm的吸收进行定量。
火焰原子吸收法测定钠钾含量的测定范围
方法的适用范围本方法可用于一般环境水样中钾、钠的测定,测定的适宜浓度范围,如表1 。表1 钾、钠测定的适宜浓度范围元素波长(nm)最低检出浓度(mg/L)适宜浓度(mg/L)钾766.50.0300.05~4.0404.40.41.0~300钠589.00.0100.05~2.0330.30.1
火焰原子吸收法测定钠钾含量的结果计算
计算式中:f ——稀释比,f=定容量(ml)/水样量(ml);C——校准曲线查得的钾、钠浓度(mg/L)。精密度和准确度人工合成水样含K+ 9.82 mg/L,Na+ 46.55 mg/L,Ca2+ 40.64 mg/L,Mg2+ 8.39 mg/L,Cl- 88.29 mg/L,SO42- 293
火焰原子吸收法测定钠钾含量的方法原理
钾和钠在空气-乙炔火焰中易于原子化,可在其灵敏线766.5 nm(K)和589.0 nm(Na)处进行原子吸收测定。对于钾和钠含量较高样品,可选用次灵敏线404.4 nm(K)和330.2nm(Na)进行测定。
火焰原子吸收法测定钠钾含量的操作步骤
操作步骤(1)样品的预处理如水样有大量泥沙、悬浮物,必须及时离心或澄清,再通过0.45 μm有机微孔滤膜(25 mm),过滤后的清水用硝酸调至pH
浅谈影响火焰原子吸收分析准确度的因素
【摘 要】火焰原子吸收光谱法已经成为人们在对废弃物品中的有害重金属的进行测定的普遍方法,但是在应用仪器对废弃垃圾进行分析时,有些因素会影响分析结果的准确度,所以本文从这个问题出发,提出来解决这些因素的措施,以提高火焰原子吸收分析的准确度。 引言 现代社会在发展经济效益的同时,也在关注着生
火焰原子吸收法测定富氮合金中钾含量
富氮合金是一种混合型氮化合金添加剂,在炼钢生产中加入一定量的富氮合金,不但能有效提高钢材的强度、韧性等机械性能,同时能有效降低吨钢生产成本。但是,由于钾是高炉有害元素,如果富氮合金中含有微量元素钾,它易在高炉中循环和富集,最终可导致炉衬和炉底遭到损坏,严重影响高炉的顺行和缩短高炉寿命。因此,有效
火焰原子吸收法测定含银敷料中银含量
【摘要】本方法研究了用微波消解仪消解含银敷料以及用火焰原子吸收法测定敷料中银含量的最佳条件。结果表明,1g含银敷料,采用12mL硝酸和2mL双氧水混合液,在600W微波条件下,200℃,10min可完全消解。采用空气―乙炔贫燃火焰原子吸收法测定银含量,线性范围0―5mg/L,检出限0.0021m
火焰原子吸收光谱法测定氧化钾含量
GB/T 1879—1995 火焰原子吸收光谱法Phosphate rock and concentrate Determination of potassium oxide content Flame atomic absorption spectrometric method1 范围 本标准
火焰原子吸收法测定钠钾含量的注意事项
注意事项①钾、钠为常量元素,原子吸收又是灵敏度很高的分析方法,器皿、试剂及尘埃等均会带来污染,因此要认真仔细操作。②为避免稀释倍数过大带来误差,在高浓度情况下,最好使用次灭敏线测定或将燃烧器转动一个小角度,减小吸收光程。③为了得到更准确的分析结果,可用插入法测量,具体方法是:选择和配制两个相近的标准
钒铁-锰含量的测定-火焰原子吸收光谱法
一、范围本推荐方法用火焰原子吸收光谱法测定钒铁石中锰的含量。本方法适用于钒铁中质量分数为0.01%~l.00%的锰含量的测定。二、原理试样用盐酸、硝酸分解,加硫酸冒烟,制成酸性溶液。吸喷溶液到原子吸收光谱仪的空气-乙炔火焰中,用锰空心阴极灯作光源,于原子吸收光谱仪波长279.5nm处测量锰的吸光度。
火焰原子吸收法测医药中间体中的铁含量
药品生产需要大量的特殊化学品,这些化学品原来大多由医药行业自行生产,但随着社会分工的深入与生产技术的进步,医药行业将一些医药中间体转交化工企业生产。医药中间体属精细化工产品,生产医药中间体目前已成为国际化工界的一大产业。近年来,由于出口医药中间体不像药品那样会受到进口国的种种限制,以及赶上医药中间体
石墨炉原子吸收法测定硒含量的干扰因素
干扰废水中的共存离子和化合物在常见浓度下不干扰测定。当硒的浓度为0.08 mg/L时,锌(或镉、铋)、钙(或银)、镧、铁、钾、铜、钼、硅、钡、铝(或锑)、钠、镁、砷、铅、锰的浓度达7500 mg/L、6000 m/L、5000 mg/L、2750 m/L、2500 mg/L、2000 mg/L、10
石墨炉原子吸收法测定钒含量的干扰因素
干扰地表水中常见成分元素不产生干扰。废水中的共存离子和化合物在常见浓度下也不干扰测定,但当钒的浓度为1 mg/L,而铅、钼的浓度超过300 mg/L,铁的浓度超过200 mg/L,砷、锑、铋的浓度超过100 mg/L,硝酸的浓度超过6%时,将会抑制钒的吸收信号,使钒的测定结果偏低。