电子轰击型离子源的结构特点介绍
电子由直热式阴极F(或F)发射,在电离室A(阳极)和阴极F或F之间施加直流电位,使电子得到加速,进入电离室中,碰撞气体使气体分子电离。在电离室A和聚焦极B之间所加电位作用下,离子加速离开电离室,通过聚焦扳后在减速间隙所加电位作用下,离子减速、聚焦到达离子源出口孔。这个简单离子源既无单独的离子推斥极和偏转极,也无电子接收板和栅极,但加有电子束聚焦磁铁和可自动切换的双灯丝(一个灯丝工作,另一备用灯丝与电离室相接),这种离子源的灵敏度与灯丝发射效率、灯丝和电离室小孔的准直度、电离电压(也称电子加速电压,加于电离室和灯丝之间。电离室为正,灯丝为负)、离子加速电压(电离室相对于地的正电压,即离子能量)以及三电极引出聚焦系统的性能都有关系,还与电子束聚焦磁铁有关。......阅读全文
电子轰击型离子源的结构特点介绍
电子由直热式阴极F(或F)发射,在电离室A(阳极)和阴极F或F之间施加直流电位,使电子得到加速,进入电离室中,碰撞气体使气体分子电离。在电离室A和聚焦极B之间所加电位作用下,离子加速离开电离室,通过聚焦扳后在减速间隙所加电位作用下,离子减速、聚焦到达离子源出口孔。这个简单离子源既无单独的离子推斥
关于电子轰击离子源的介绍
1、进样方式:直接进样、GC; 2、获得单分子离子的方式:加热气化; 3、作用过程:电离方式—高能电子轰击70eV; 4、水平方向:灯丝与阳极间(0V电压)—高能电子—冲击样品—正离子 5、垂直方向:G3-G4加速电极(低电压)—较小动能—狭缝准直G4-G5加速电极(高电压)—较高动能—
关于电子轰击离子源的机理介绍
极面约0.2特斯拉的磁铁如NS相吸放置,离子束通过的中,位置具有较大的场强,由此引起离子束的质量歧视效应(在到选出口缝前由于电子束聚焦磁铁的影响,离子束已按质荷比偏离,因而输出的离子流与质量有关)。 在性能要求很严的离子源中,在设计和装配时应充分考虑这一位移量和出射角的变化,用机械方法纠正。有
实验分析仪器质谱仪电子轰击离子源结构原理及特点
1.基本原理电子轰击离子源(electron impact ionization,EI)是一种通过高能电子轰击样品分子,使样品分子电离的一种离子源。在高真空条件下,电流通过灯丝,灯丝发射电子,电子由电场加速获得70eV的能量,并在电离盒内与样品分子碰撞,使待测样品分子发生电离。被电离的样品分子在离子
实验室分析仪器质谱仪电子轰击型离子源及原理
电子轰击离子源(electron impact ion source)是利用具有一定能量的电子束使气态的样品分子或原子电离的离子源(简称EI源)。具有结构简单、电离效率高、通用性强、性能稳定、操作方便等特点,可用于气体、挥发性化合物和金属蒸气等样品的电离,是质谱仪器中广泛采用的电离源之一。在质谱分析
比较电子轰击离子源、场致电离源及场解析电离源的特点
1)电子轰击源,电子轰击的能量远高于普通化学键的键能,因此过剩的能量引起分子多个键的断裂,产生许多碎片离子,因而能够提供分子结构的一些重要的官能团信息,但对于相对分子质量较大、或极性大,难气化,热稳定性差的有机化合物,在加热和电子轰击下,分子易破碎,难以给出完整分子离子信息。(2)在场致电离源的质谱
气质联用仪电子轰击离子化(的特点介绍
⑴、结构简单,操作方便。 ⑵、图谱具有特征性,化合物分子碎裂大,能提供较多信息,对化合物的鉴别和结构解析十分有利。 ⑶、所得分子离子峰不强,有时不能识别。 本法不适合于高分子量和热不稳定的化合物。 化学离子化(chemicalionization,CI)将反应气(甲烷、异丁烷、氨气等)与
电子型粉质仪的结构特点
在面粉的品质检测中,电子型粉质仪是其中重要的检测仪器之一,可用它来测试面粉在揉和时的吸水率、形成时间、稳定性和弱化度。因此各级质检机构、粮食企业、农业、食品加工及科研院校等常利用它来指导小麦搭配和面粉配混、面粉质量稳定性评价等。 从电子型粉质仪的结构上来看,它主要是由五个部分组成,它们分别是驱动
电子轰击式离子源技术改进-提高质谱仪器灵敏度
电子轰击式离子源广泛应用于气体同位素质谱、色谱-质谱联用仪、残气分析仪等科学仪器。为提高离子引出效率,中国科学院地质与地球物理研究所支撑系统工程师张建超发明了一种新型电子轰击离子源的试验装置及其设计方法,综合改进有效提高了质谱仪器的灵敏度。 电子轰击式离子源是利用灯丝发射的具有一定动能的电子去
实验室分析仪器质谱仪原子轰击型离子源及原理
与离子轰击电离相似,原子轰击电离也是利用轰击溅射使样品电离的,所不同的是用于轰击的粒子不是带电离子,而是高速的中性原子,因此原子轰击电离源又称为快原子轰击源(fast atom bombardment source, FAB)。原子轰击源是20世纪80年代发展起来的一种新技术。由于电离在室温下进行和
实验室分析仪器质谱仪离子轰击型离子源及原理
利用不同种类的一次离子源产生的高能离子束轰击固体样品表面,使样品被轰击部位的分子和原子脱离表面并部分离子化—一产生二次离子,然后将这些二次离子引出、加速进入到不同类型的质谱仪中进行分析。这种利用高能一次离子轰击使被分析样品电离的方式统称为离子轰击电离。使用的一次离子源包括氧源、氩源、铯源、镓源等。1
电子轰击电离质谱仪分类方法
电子轰击电离质谱仪类型有多种。1、按分析目的可分:电子轰击电离化验室质谱仪和电子轰击电离工业质谱仪。2、按结构可分:台式电子轰击电离质谱仪和落地式电子轰击电离质谱仪。3、按分析规模可分:小型电子轰击电离质谱仪和大型电子轰击电离质谱仪。4、按质量分析器的工作原理可分:电子轰击电离双聚焦质谱仪、电子轰击
电子轰击二次电子像的概念
中文名称电子轰击二次电子像英文名称electron bombardment secondary electron image定 义在发射电子显微镜中,电子轰击样品激发的二次电子所成的像。应用学科机械工程(一级学科),光学仪器(二级学科),电子光学仪器-电子光学仪器一般名词(三级学科)
转荷型和溅射型负离子源的介绍
1、转荷型负离子源 利用正离子束转荷产生负离子的装置。正离子束与固体物质表面相互作用,或通过气体靶俘获电子就能转化成负离子束。正离子束可以由小型双等离子体离子源提供。如果采用高频离子源,只要把引出电极的孔道加长,就能得到负离子束。 2、溅射型负离子源 用正离子束去轰击工作物质,就能得到该种
实验室分析仪器质谱仪的离子源系统分类及运行原理
离子源是质谱仪器最主要的组成部件之一,其作用是使被分析的物质分子或原子电离成为离子,并将离子会聚成具有一定能量和一定几何形状的离子束。由于被分析物质的多样性和分析要求的差异,物质电离的方法和原理也各不相同。在质谱分析中,常用的电离方法有电子轰击、离子轰击、原子轰击、真空放电、表面电离、场致电离、化学
实验室分析仪器质谱仪的离子源种类及各自原理
离子源是质谱仪器最主要的组成部件之一,其作用是使被分析的物质分子或原子电离成为离子,并将离子会聚成具有一定能量和一定几何形状的离子束。由于被分析物质的多样性和分析要求的差异,物质电离的方法和原理也各不相同。在质谱分析中,常用的电离方法有电子轰击、离子轰击、原子轰击、真空放电、表面电离、场致电离、化学
A型DNA的结构特点
A型DNA与B型DNA是在两种环境下同种物质不同的形式。B型DNA:92%RH,钠盐,溶液和细胞中天然状态中的DNA多以此状态存在。A型DNA:75%RH,钠盐。A型DNA也是由反向的两条多核苷酸链组成的双螺旋,为右手螺旋,但螺旋体较宽而短,碱基与中心轴之倾角也不同,呈19度。
A-型-DNA的结构特点
中文名称A 型 DNA英文名称A-form DNA定 义一种右手双螺旋构型的DNA。螺旋每一圈为11个核苷酸,核苷酸对的平面与双螺旋轴倾斜20°角。应用学科细胞生物学(一级学科),细胞化学(二级学科)
电子枪间热式轰击型阴极和间热式加热型阴极加热方式
间热式轰击型阴极 间热式轰击型阴极加热方式是,通过在热子(灯丝)和阴极之间加上几百乃至上千伏的轰击电压,在此电压下,从热子发射的电子轰击阴极,使阴极加热到一定温度后从其表面发射出大量电子来。 间热式加热型阴极 间热式加热型阴极的化合物层固定在薄壁的底托上(镍管或钼管),底托下面放着耐热绝缘
电子探针的结构特点
电子探针X射线显微分析仪(简称电子探针)利用约1Pm的细焦电子束,在样品表层微区内激发元素的特征X射线,根据特征X射线的波长和强度,进行微区化学成分定性或定量分析。电子探针的光学系统、真空系统等部分与扫描电镜基本相同,通常也配有二次电子和背散射电子信号检测器,同时兼有组织形貌和微区成分分析两方面的功
电子探针的结构特点
电子探针X射线显微分析仪(简称电子探针)利用约1Pm的细焦电子束,在样品表层微区内激发元素的特征X射线,根据特征X射线的波长和强度,进行微区化学成分定性或定量分析。电子探针的光学系统、真空系统等部分与扫描电镜基本相同,通常也配有二次电子和背散射电子信号检测器,同时兼有组织形貌和微区成分分析两方面的功
电子轰击二次电子像的定义和功能
中文名称电子轰击二次电子像英文名称electron bombardment secondary electron image定 义在发射电子显微镜中,电子轰击样品激发的二次电子所成的像。应用学科机械工程(一级学科),光学仪器(二级学科),电子光学仪器-电子光学仪器一般名词(三级学科)
Z型DNA的结构特点
Z-DNA又称Z型DNA,是DNA双螺旋结构的一种形式,具有左旋型态的双股螺旋(与常见的B-DNA相反),并呈现锯齿形状。
Z型DNA的结构特点
Z-DNA又称Z型DNA,是DNA双螺旋结构的一种形式,具有左旋型态的双股螺旋(与常见的B-DNA相反),并呈现锯齿形状。
C型DNA的结构特点
中文名称C型DNA英文名称C-form DNA;C-DNA定 义在相对湿度约44%下所获得的DNA锂盐纤维所特有的构象,为右手双螺旋,螺旋每转一圈包含约9.3个核苷酸残基,螺距3.1 nm,碱基斜角呈6。应用学科生物化学与分子生物学(一级学科),核酸与基因(二级学科)
Z型DNA的结构特点
Z-DNA又称Z型DNA,是DNA双螺旋结构的一种形式,具有左旋型态的双股螺旋(与常见的B-DNA相反),并呈现锯齿形状。
Z型DNA的结构特点
Z-DNA又称Z型DNA,是DNA双螺旋结构的一种形式,具有左旋型态的双股螺旋(与常见的B-DNA相反),并呈现锯齿形状。
B型DNA的结构特点
1.两条反向平行的互补双螺旋链,一条方向为5‘→3’,另一条方向为3‘→5’,围绕同一中心纵轴,从右向上盘旋。2.双螺旋磷酸-脱氧核糖主链在外,位于内的碱基平面与中心轴垂直。3.每个碱基相距0.34nm,同条链相邻碱基夹角36度,每10个碱基形成螺旋1周,螺距3.54nm。4.露于螺旋外的磷原子离中
反射型光纤的结构特点
反射型光纤又称阶跃折射率光纤。 结构如下图所示,一根纤维由两种均匀介质组成,内部叫作芯线,外部包住芯线的叫作包层。它们的折射率分别为n1和n2,且n1>n2。传输光时在芯线内进行,光从芯线内射到包层的交界面上,入射角大于临界面角θc=arcsin(n2/n1)发生全反射。这样光就被限制在芯线内沿折线
复制型DNA的结构特点
中文名称复制型DNA英文名称replicative form DNA;RF-DNA定 义单链核酸(DNA或RNA)病毒在复制期间所形成的由亲代单链分子与子代单链分子配对结合形成的DNA双链。应用学科生物化学与分子生物学(一级学科),核酸与基因(二级学科)