关于寡糖的获得途径介绍

获得低聚糖的途径主要有五个: 1. 从天然原料提取; 2. 利用转移酶、水解酶催化的糖基转移反应合成; 3. 天然多糖的酶水解反应; 4. 天然多糖的酸水解; 5. 化学合成; 从食品工业的角度看,低聚糖作为一种大量使用的功能性基料,必须考虑到生产成本,因此,较好的方法是利用生物技术,即酶法水解或酶法转移来生产各种低聚糖。科学家已基本达成共识,使用酶可能是大量合成低聚糖的唯一有效途径。......阅读全文

关于寡糖的获得途径介绍

  获得低聚糖的途径主要有五个:  1. 从天然原料提取;  2. 利用转移酶、水解酶催化的糖基转移反应合成;  3. 天然多糖的酶水解反应;  4. 天然多糖的酸水解;  5. 化学合成;  从食品工业的角度看,低聚糖作为一种大量使用的功能性基料,必须考虑到生产成本,因此,较好的方法是利用生物技术

关于低聚糖的获得途径介绍

  获得低聚糖的途径主要有五个:  1. 从天然原料提取;  2. 利用转移酶、水解酶催化的糖基转移反应合成;  3. 天然多糖的酶水解反应;  4. 天然多糖的酸水解;  5. 化学合成;  从食品工业的角度看,低聚糖作为一种大量使用的功能性基料,必须考虑到生产成本,因此,较好的方法是利用生物技术

关于低聚糖的获得途径介绍

  获得低聚糖的途径主要有五个:  1. 从天然原料提取;  2. 利用转移酶、水解酶催化的糖基转移反应合成;  3. 天然多糖的酶水解反应;  4. 天然多糖的酸水解;  5. 化学合成;  从食品工业的角度看,低聚糖作为一种大量使用的功能性基料,必须考虑到生产成本,因此,较好的方法是利用生物技术

关于寡糖的分类介绍

  低聚糖主要有两类,一类是低聚麦芽糖,具有易消化、低甜度、低渗透特性,可延长供能时间,增强肌体耐力,抗疲劳等功能,人体经过重(或大)体力消耗和长时间的剧烈运动后易出现脱水,能源储备,消耗血糖降低,体温高,肌肉神经传导受影响,脑功能紊乱等一系列生理变化和症状,而食用低聚麦芽糖后,不仅能保持血糖水平,

关于寡糖的命名的介绍

  低聚糖的系统命名法,,因非还原性糖和还原性糖不同。非还原糖按照糖苷命名,例如蔗糖为非还原性二糖,可命名为葡萄糖苷或果糖苷,如图《蔗糖的系统命名》所示,这两个名称都是正确的。糖苷键由两个半缩醛羟基间形成,位置明确,无须用数字标明。  三糖以上的非还原性低聚糖的命名法与二糖相似,按照糖基-糖基-糖苷

关于果寡糖的作用介绍

  果寡糖的作用主要是通过调节动物肠道中微生物区系平衡而实现的。动物体内分泌的α-淀粉酶、蔗寡酶、麦芽糖酶不能水解以β-1,2-糖苷键相连的果寡糖,因此果寡糖大都能顺利通过胃和小肠而不被降解利用,但大肠中的乳酸杆菌,双岐杆菌,梭状芽孢杆菌可产生一系列果糖苷酶,使这些有益菌得到养分而增殖。而有害菌不能

关于果寡糖的功能介绍

  1、果寡糖润肠通便:促进肠道蠕动、清除肠道垃圾,改善便秘、防止腹泻,改善肠胃功能。黄金双歧因子食用后,在肠内选择性地作用于双歧杆菌、乳酸菌等有益菌,并使其大量增殖。双歧杆菌增殖过程中产生的乙酸和乳酸能够增强肠动力和肠蠕动的协调性,促进肠壁的收缩运动,调节肠道微生态,纠正肠功能紊乱,有改善便秘和养

关于寡糖的分布与摄入介绍

  自然界中仅有少数几种植物含有天然的功能性低聚糖。例如:洋葱、大蒜、芒壳、天门冬、菊苣根和洋蓟等中含有低聚果糖,大豆中含有大豆低聚糖。  但是,从一般人日常的膳食习惯上看,一个人每天从天然食物中摄取的低聚糖往往很难达到日常推荐量标准。额外补充些低聚糖,对于婴幼儿、成年人、老年人、工作压力大的人和那

关于异麦芽寡糖的基本介绍

  异麦芽寡糖(IMO )少量存在于酱油、清酒、酱类、蜂蜜及果葡糖浆中, 能有效地促进人体肠道内有益菌群———双歧杆菌的生长繁殖,也有良好的抗龋齿性、难发酵性和保湿性等,在食品、医药、饲料工业应用越来越广泛。  异麦芽寡糖亦称分枝低聚糖,是由葡萄糖以α(1→6)糖苷键结合而成的单糖数在2~5不等的低

关于寡糖的基本信息介绍

  低聚糖又名寡糖( oligosaccharide)或少糖类,是一种新型功能性糖源,低聚糖集营养、保健、食疗于一体,广泛应用于食品、保健品、饮料、医药、饲料添加剂等领域。  它是替代蔗糖的新型功能性糖源,是面向二十一世纪“未来型”新一代功效食品。是一种具有广泛适用范围和应用前景的新产品,近年来国际

关于寡糖的基本组成介绍

  存在形式低聚糖是指含有2-10个糖苷键聚合而成的化合物,糖苷键是一个单糖的苷羟基和另一单糖的某一羟基脱水缩合形成的。它们常常与蛋白质或脂类共价结合,以糖蛋白或糖脂的形式存在。 低聚糖通常通过糖苷键将2-4个单糖连接而成小聚体,它包括功能性低聚糖和普通低聚糖,这类寡糖的共同特点是:难以被胃肠消化吸

关于果寡糖的基本信息介绍

  果寡糖(Fructooligosaccharide FOS),又称为果聚糖、低聚果糖、藤果三糖族低聚糖,分子式为G-F-Fn(G为葡萄糖,F为果糖,n=13),是在蔗糖分子上以β-1,2-糖苷键结合数个D-果糖初所形成的一组低聚糖的总称。  果寡糖广泛存在于香蕉、大麦、大蒜、洋葱、黑麦、马铃薯、

关于壳寡糖的基本信息介绍

  壳寡糖,又叫壳聚寡糖、低聚壳聚糖,是将壳聚糖经特殊的生物酶技术(也有使用化学降解、微波降解技术的报道)降解得到的一种聚合度在2~20之间寡糖产品,分子量≤3200Da,是水溶性较好、功能作用大、生物活性高的低分子量产品。它具有壳聚糖所没有的较高溶解度,全溶于水,容易被生物体吸收利用等诸多独特的功

关于壳寡糖的生理功能介绍

  1、调节肠道微生态  在酸性条件下,壳寡糖分子中的游离氨基质子化,质子化按能与细菌带正电的细胞膜作用,干扰细菌细胞膜功能,造成细菌体内细胞质流失,对真菌和微生物的生长有抑制作用。 其抗菌活性与菌种和浓度有关,且随浓度加大其抗菌活性增强,高浓度时有杀菌作用。  甲壳低聚糖是BF的一种重要种类,它能

获得低聚糖的主要途径

1. 从天然原料提取;2. 利用转移酶、水解酶催化的糖基转移反应合成;3. 天然多糖的酶水解反应;4. 天然多糖的酸水解; 5. 化学合成;

关于寡糖素的生理生化作用介绍

  位于细胞壁上的,具有调节活性的寡糖片断称为寡糖素。  A:它是植物抗毒素的激发子;极微量的寡聚糖就可以激发植株或细胞内发生强烈抗病反应,产生并积累抗病性物质。  B:它是蛋白酶抑制剂诱导因子;它可以抑制细胞内一些结构蛋白的活性,还可以抑制某些酶的活性。  C:与植物细胞过敏反应有关;寡糖片段可能

关于氨基寡糖素的基本信息介绍

  氨基寡糖素,也称为农业专用壳寡糖,是根据植物的生长需要,采用独特的生物技术生产而成,分为固态和液态两种类型。 壳寡糖本身含有丰富的C、N, 可被微生物分解利用并作为植物生长的养份。  壳寡糖可改变土壤微生物区系, 促进有益微生物的生长而抑制一些植物病原菌。壳寡糖可刺激植物生长,使农作物和水果蔬菜

关于氨基寡糖素提高杀虫作用的介绍

  氨基寡糖素提高杀虫活性和趋避活性常规使用的杀虫剂剂型及施药方法难以使农药充分接触到靶标昆虫,更多的是残留在环境中,造成浪费,且污染环境,给人类健康造成危害。所以如何提高杀虫剂的缓释性能就成为了亟需解决的问题。将壳聚糖及壳寡糖用于室内杀虫实验。结果表明,对鳞翅目和同翅目害虫均具有一定的杀虫活性,在

关于糖异生的途径介绍

  当肝或肾以丙酮酸为原料进行糖异生时,糖异生中的其中七步反应是糖酵解中的逆反应,它们有相同的酶催化。但是糖酵解中有三步反应,是不可逆反应。在糖异生时必须绕过这三步反应,代价是更多的能量消耗。  这三步反应都是强放热反应,它们分别是:  1、葡萄糖经己糖激酶催化生成6磷酸葡萄糖 ΔG= -33.5

关于氨基寡糖素提高植物生长的作用介绍

  种子被膜剂氨基寡糖素(壳寡糖)作为一种植物生长调节剂及抗菌剂,可诱导植物产生PR蛋白和植保素,利用氨基寡糖素为基本成分研制的新型种衣剂,具有巨大的生产潜力。对氨基寡糖素油菜种衣剂剂型应用效果进行研究,利用壳聚糖酶降解壳聚糖获得的氨基寡糖素为基本成分,配以化肥、微量元素及防腐剂等成分进行混合,调制

关于代谢途径的特征介绍

  概括生物体代谢途径的重要特征为(1)由代谢的中间体产生许多分支,从而构成了复杂的代谢网;(2)正反应(A→X)与逆反应(X→A)的途径往往是不同的,因此防止达到单纯的平衡状态;(3)在代谢途径的一些中间过程有各种代谢调节作用。把代谢途径以线路图案形式来表示就是代谢图(metabolic map)

关于脑脊液循环的途径介绍

  侧脑室脉络丛产生的脑脊液经室间孔流至第三脑室,与第三脑室脉络丛产生的脑脊液一起,经中脑水管流入第四脑室,再汇合第四脑室脉络丛产生的脑脊液一起经第四脑室正中孔和两个外侧孔流入蛛网膜下隙,然后脑脊液再沿此隙流向大脑背面的蛛网膜下隙,经蛛网膜粒渗透到硬脑膜窦(主要是上矢状窦)内,回流入血液中。  即:

关于糖异生作用的途径介绍

  当肝或肾以丙酮酸为原料进行糖异生时,糖异生中的其中七步反应是糖酵解中的逆反应,它们有相同的酶催化。但是糖酵解中有三步反应,是不可逆反应。在糖异生时必须绕过这三步反应,代价是更多的能量消耗。  这三步反应都是强放热反应,它们分别是:  1、葡萄糖经己糖激酶催化生成6磷酸葡萄糖 ΔG= -33.5

关于戊糖的代谢途径介绍

  磷酸戊糖途径,是糖有氧氧化的重要支路。它提供生物合成所需要的NADPH,为核酸代谢提供戊糖,并通过酵解的中间产物为生物提供能量。磷酸戊糖途径可划分为先后两个阶段,氧化为第一阶段,从葡萄糖开始通过脱氢和脱羧作用生成磷酸戊糖;非氧化为第二阶段,磷酸戊糖经过酶的转换和缩合作用(分子重排)又形成六碳糖和

关于壳寡糖的产品简介

  壳寡糖是由壳聚糖解聚制成,是甲壳素、壳聚糖产品的升级产品,具有壳聚糖不可比拟的优越性。采用先进的生物酶解法制备壳寡糖,它具有:分子量低、水溶性好、功能作用大、易被人体吸收、生物活性高等优势。同时具有纯天然、无辐射、无污染、无添加等特点。

关于mRNA降解途径介绍

涉及到许多细胞内因子和复合物, 如Dcp1p、Pat1p、Rap55和staufen等.同时, 也有报导认为, 细胞质处理小体是体内mRNA 降解的主要位点 .因此, 明确细胞质处理小体(P-body)在mRNA 降解过程的功能以及各种酶和复合物调节mRNA 降解所经历的途径是本领域研究的主要内容.

降解壳寡糖的物理方法介绍

  1、降解壳寡糖的超声波法和微波法:此方法能够降低能耗,减少污染,节省时间和原料,具有产业化前景和广泛的市场潜力。  2、降解壳寡糖的γ射线照射下辐射降解:辐射降解是在放射性射线照射下, 使壳聚糖分子产生电离或激发的物理效应,进而导致分子链断裂。  3、降解壳寡糖的光降解法:紫外线、可见光和红外线

关于曲霉菌的感染途径介绍

  散布在空气中的分生孢子在有利的条件下菌丝本身也可伸长增殖。菌丝形成隔壁即可产生两个独立的细胞。此外称做子囊孢子的有性孢子也具有增殖的能力。可引起以肺为主的多个脏器的非坏死性肉芽肿性病变。在病变部位可见大量的嗜中性粒细胞浸润,其中可见呈Y字型分歧的有隔壁的菌丝。  曲霉菌引起的眼感染症中主要是由感

关于磷酸戊糖途径的基本介绍

  磷酸戊糖途径(pentose phosphate pathway)是葡萄糖氧化分解的一种方式。由于此途径是由6-磷酸葡萄糖(G-6-P)开始,故亦称为己糖磷酸旁路。此途径在细胞质中进行,可分为两个阶段。  第一阶段由G-6-P脱氢生成6-磷酸葡糖酸内酯开始,然后水解生成6-磷酸葡糖酸,再氧化脱羧

关于糖酵解途径的基本介绍

  糖类最主要的生理功能是为机体提供生命活动所需要的能量。糖分解代谢是生物体取得能量的主要方式。生物体中糖的氧化分解主要有3条途径:糖的无氧氧化、糖的有氧氧化和磷酸戊糖途径。催化糖酵解反应的一系列酶存在于细胞质中,因此糖酵解全部反应过程均在细胞质中进行。糖酵解是所有生物体进行葡萄糖分解代谢所必须经过