骨桥蛋白的基因结构
OPN人的OPN基因定位在染色体4q13,是单一编码基因,8kb大小,具有7个外显子和6个内含子组成。小鼠位于5号染色体上,基因长约7Kb,包括7个外显子,其5’端有启动子序列,该启动子中IKb长度也被测序并用GCG程序分析了转录因子的可能识别部位,这些转录因子包括API-5、PEA-3、PEA-1、Ets等。 OPN基因结构的变异性较大。OPN本身是多等位基因,在小鼠有3个等位基因,人类至少有2个等位基因。通过比较分析,发现尽管不同种属甚至同一种属不同组织的OPN基因具有一定的多态性,其总体核苷酸序列还是呈中度保守性,其中编码N末端和C末端以及含RGD序列的50个氨基酸区具有高度序列保守性。 OPN启动子包括1个TATA盒(-28-22)、1个颠倒的CCAAT盒(-55-50)及1个GC盒及多种转录因子的结合位点。API结合部位是高度保守的增强子样元件。OPN基因启动子上含有多个应答元件,如VitD反应元件,糖皮质激素......阅读全文
骨桥蛋白的基因结构
OPN人的OPN基因定位在染色体4q13,是单一编码基因,8kb大小,具有7个外显子和6个内含子组成。小鼠位于5号染色体上,基因长约7Kb,包括7个外显子,其5’端有启动子序列,该启动子中IKb长度也被测序并用GCG程序分析了转录因子的可能识别部位,这些转录因子包括API-5、PEA-3、PEA
关于骨桥蛋白的蛋白结构的介绍
OPN作为带负电的非胶原性骨基质糖蛋白,广泛的分布于多种组织和细胞中,其相对分子质量约为44 kDa,约含300 个氨基酸残基,其中天冬氨酸、丝氨酸和谷氨酸残基占有很高的比例,约占总氨基酸量的一半。骨桥蛋白多肽链的二级结构中包括8个α螺旋和6个β折叠结构,高度保守的RGD基元两端各有一个β折叠结
关于骨桥蛋白的基本介绍
骨桥蛋白(osteopontin,OPN)是一种糖基化蛋白,广泛存在于细胞外基质中.最初认为OPN是一种重要的骨基质蛋白,与骨的形成和发展密切相关。 骨桥蛋白(OPN活性蛋白,osteopontin)在母乳的含量甚高(平均约138 mg/L),是母乳中重要的免疫活性蛋白。OPN的糖基化修饰以
概述骨桥蛋白的表达方式
正常情况下其表达甚微的细胞,如巨噬细胞、SMC、T淋巴细胞、成纤维细胞等在一些诱导因素下可以大量表达OPN,包括: (1)高血压:人主动脉平滑肌细胞暴露在160 mmHg的高压下3h,然后再培养,结果3h后发现高压组同非高压组相比细胞增殖11%。免疫印迹分析发现,培养8 h以内OPN的表达没有
关于骨桥蛋白的研究历史介绍
1979年Senger等首次报道一种包含RGD整合素结合区的磷酸化糖蛋白的研究,称之为转化相关性磷酸蛋白。 骨桥蛋白(Osteopontin,OPN)是一种含精氨酸-甘氨酸-天冬氨酸(Arg-Gly-Asp,RGD)的分泌型糖基化磷蛋白,已归类于细胞外基质(extracellular matr
简述骨桥蛋白的自身调节方式
OPN有磷酸化和去磷酸化两种形式,磷酸化修饰是影响OPN活性的一个重要因素。多种激酶对OPN中丝氨酸、苏氨酸残基发生磷酸化有不同部位,发生蛋白磷酸化部位不同可能是其组织特异性的原因之一。磷酸化后的OPN与细胞表面整合素受体结合,而去磷酸化OPN则能与CD44受体结合,从而引起不同的效应。完整的O
关于骨桥蛋白的分布范围介绍
OPN可表达于不同动物的各种组织里,如骨、肾(胎肾和成年肾)、肺、肝、膀胱、胰腺、乳腺、睾丸、脑、骨髓和蜕膜。不同细胞类型也能表达OPN,如骨细胞、成骨细胞、破骨细胞、软骨细胞、神经细胞、上皮细胞、内皮细胞、血管平滑肌细胞(SMC)、活化的T细胞、MФ和自然杀伤细胞(NK)细胞亚群,75%(45
骨桥蛋白的结合位点的介绍
OPN分布广泛并受多种因素的调控,能与许多物质结合。 (1)结合多种整合素受体:已发现αvβ1、αvβ3、αvβ5、α5β1、α8β1、α4β1和α9β1等7种整合素能与OPN结合,2个α4β1整合素结合部位位于OPN的N-末端凝血酶片酸的38 aa结构域上,α9β1能结合凝血酶断裂的OPN
骨桥蛋白与组织修复的影响作用
成体组织中创伤多通过瘢痕组织进行修复。在肉芽组织中,绝大多数新生血管内皮细胞中都存在OPN mR-NA的高表达。OPN能够促进内皮细胞的增殖、迁移以及新生血管管形的发生。在缺血诱导的视网膜血管化的发病过程中,OPN能够通过介导血管内皮细胞与细胞外基质的相互作用,加速血管内皮细胞的增殖,促进新生血
关于骨桥蛋白的外部调节方式介绍
OPN表达受激素生长因子,OPN在各种组织中均有表达,如骨,肾,肺,肝,膀胱,乳腺,睾丸,脑,胰腺等 [15] 。不同的细胞类型可能有不同的调节机制,种因素能调控OPN的表达: (1)感染和损伤能使T细胞和MФ的OPN上调表达。 (2)骨激素:VitD3通过OPN启动子的VDRE应答元件刺激
关于骨桥蛋白参与体内代谢的作用
骨桥蛋白与血管重塑 以往认为骨桥蛋白的主要作用是参与骨形成 ,近年来发现其在心血管系统特别是血管重塑过程中发挥重要调节作用。其作用将为临床治疗PTCA后再狭窄、高血压及动脉粥样硬化等引起的血管重塑提供新的策略。 [18] OPN与免疫系统 OPN在淋巴细胞,包括T细胞及NK细胞亚群,被非特
骨桥蛋白与早期发育的作用介绍
OPN对婴幼儿早期发育具有积极作用,尤其对于婴幼儿早期的免疫调节。在生命早期,Th1细胞因子产生不足和应答能力低下可能是导致新生儿固有细胞免疫力低,及向Th2免疫应答偏移的主要原因。研究表明OPN发挥作用的关键在于它对Th1和Th2免疫平衡的调节。临床研究表明,食用强化牛乳OPN的配方粉,婴儿耐
概述骨桥蛋白的生物学作用
1.细胞粘附 OPN通过依赖RGD序列(αvβ1、αvβ3、αvβ5、αvβ1、α8β1)和非依赖RGD序列(α4β1、α9β1)结合存在于细胞表面上的多种整合素受体,起细胞粘附作用。OPN能粘附转化的JB6细胞和HL60细胞(αvβ5和α4β1受体),且OPN以非RGD形式结合转化的成纤维
骨桥蛋白与骨代谢的作用介绍
成骨细胞、骨细胞及破骨细胞均可分泌OPN,在骨基质的矿化和吸收过程中有重要作用。OPN在软骨内化骨、膜内化骨区域含量丰富,在编织骨中,于成骨细胞、骨细胞的胞浆中可以观察。OPN分子中有一富含天冬氨酸的区域,通过这一区域OPN可以与组织中的轻磷灰石结合而发挥作用。在骨基质矿化开始后,成骨细胞中OP
结构基因的结构
人类结构基因4个区域:①编码区,包括外显子与内含子;②前导区,位于编码区上游,相当于RNA5’末端非编码区(非翻译区);③尾部区,位于RNA3’编码区下游,相当于末端非编码区(非翻译区);④调控区,包括启动子和增强子等。基因编码区的两侧也称为侧翼顺序(图3-1)。 1.外显子和内含子 大多
ras基因的基因结构
ras基因在进化中相当保守,广泛存在于各种真核生物如哺乳类,果蝇,真菌,线虫及酵母中,提示它有重要的生理功能.哺乳动物的ras基因家族有三个成员,分别是H-ras,K-ras,N-ras,其中K-ras的第四个外显子有A,B两种变异体.各种ras基因具有相似的结构,均由四个外显子组成,分布于全长约3
骨桥蛋白与心血管系统关系
骨桥蛋白是细胞外基质中一种重要的功能蛋白 ,由多种组织细胞合成与分泌.在心血管系统中 ,骨桥蛋白通过与血管内皮和平滑肌细胞表面的受体integrinαvβ3 相互作用而介导细胞粘附,增殖和迁移 ,进而参与血管内皮损伤所导致的心血管病的发生与发展过程.本文从分子生物学角度对骨桥蛋白的结构,功能,基
骨桥蛋白在炎症反应过程中的作用
OPN主要通过β1和β3整合素受体以及部分白细胞表面的CD44受体对白细胞的黏附和迁移发挥调理作用。。OPN经凝血酶酶切以后,其N-末端片段能够与巨噬细胞表面的CD44受体结合,对巨噬细胞具有趋化功能;而其C-末端片段则可与细胞表面的整合素受体αvβ1相互作用,介导巨噬细胞的黏附和迁移。OPN与
简述ras基因的基因结构
ras基因在进化中相当保守,广泛存在于各种真核生物如哺乳类,果蝇,真菌,线虫及酵母中,提示它有重要的生理功能.哺乳动物的ras基因家族有三个成员,分别是H-ras,K-ras,N-ras,其中K-ras的第四个外显子有A,B两种变异体.各种ras基因具有相似的结构,均由四个外显子组成,分布于全长
人骨桥蛋白(OPN)酶联免疫分析(ELISA)
本试剂仅供研究使用 目的:本试剂盒用于测定人血清,血浆及相关液体样本中骨桥蛋白(OPN)的含量。实验原理:本试剂盒应用双抗体夹心法测定标本中人骨桥蛋白(OPN)水平。用纯化的人骨桥蛋白(OPN)抗体包被微孔板,制成固相抗体,往包被单抗的微孔中依次加入骨桥蛋白(OPN),再与HRP标记的骨
结构基因的特征
1.它们彼此紧密连锁。按Z,Y,A顺序排列,而且在一起转录形成一个多顺反子的mRNA;2.只有当乳糖存在时,这些基因才迅速转录,形成多顺反子的mRNA,并翻译成相应的酶。所以这些酶,就是由乳糖诱导产生的诱导酶,其活性的产生和活性的提高不是已有的酶被激活所致,而是在诱导物的诱导下酶的重新合成,并随着合
Rictor基因的结构
Rictor和Mtor(frap1;mim 601231)是一种蛋白质复合物的组成部分,该复合物整合了营养和生长因子衍生的信号来调节细胞生长(Sarbassov等人,2004[PubMed 15268862])。
结构基因的功能
结构基因在理论上有如下两种功能:其核苷酸顺序决定一条多肽链(蛋白质链)一级结构上的氨基酸序列,即一个顺反子(cistron)(带着足以决定一个蛋白质分子的全部组成需要信息的最短DNA片段);其核苷酸顺序也决定一条多核苷酸链(如mRNA)的核苷酸顺序。一种结构基因对应于一种蛋白质分子。结构基因在调节基
结构基因的概念
结构基因是编码蛋白质或RNA的基因。细菌的结构基因一般成簇排列,多个结构基因受单一启动子共同控制,使整套基因或都表达或者都不表达。结构基因编码大量功能各异的蛋白质,其中有组成细胞和组织器官基本成分的结构蛋白、有催化活性的酶和各种调节蛋白等。
bcr/abl融合基因的基因结构
人abl基因位于9号染色体长臂,有1b、1a和2~11共12个外显子[1]。转录始自1b或1a,形成的两种mRNA长度分别为7kb和6kb,合成的两种蛋白质分子量均约为145,前者定位于细胞膜,而后者主要在细胞核内。abl主要结构有N端的肉瘤同源2(srchomology,SH2)、SH1。SH2结
基因导入仪的结构
基因导入仪主要功能是产生一个高电压、大电流RC尖脉冲。因此它的主要组成部分包括高压脉冲产生、单片机和电极(形状由需要而定)。该仪器整机一体化设计,操作简单,显示直观,微处理器控制的脉冲放电采用人机对话界面,细化了电容、电阻的设定范围,使细胞的电穿孔实验在相关条件下有了更广泛的选择。
关于结构基因的简介
结构基因是指决定某一种蛋白质分子结构的相应的一段DNA或染色体。在正常情况下,在需要某种或其有关的酶时,在调节基因和操纵基因的控制下等候在启动子(Promotor)位置上的RNA聚合酶开始转录,从而产生了与这些酶有关的结构基因的信使RNA,并由后者合成所需的酶。若其发生突变,便会产生失去活性的蛋
简述结构基因的功能
结构基因在理论上有如下两种功能:其核苷酸顺序决定一条多肽链(蛋白质链)一级结构上的氨基酸序列,即一个顺反子(cistron)(带着足以决定一个蛋白质分子的全部组成需要信息的最短DNA片段);其核苷酸顺序也决定一条多核苷酸链(如mRNA)的核苷酸顺序。一种结构基因对应于一种蛋白质分子。结构基因在调
结构基因的功能特点
结构基因在理论上有如下两种功能:其核苷酸顺序决定一条多肽链(蛋白质链)一级结构上的氨基酸序列,即一个顺反子(cistron)(带着足以决定一个蛋白质分子的全部组成需要信息的最短DNA片段);其核苷酸顺序也决定一条多核苷酸链(如mRNA)的核苷酸顺序。一种结构基因对应于一种蛋白质分子。结构基因在调节基
原核细胞的基因结构
原核生物的基因结构多数以操纵子形式存在,即完成同类功能的多个基因聚集在一起,处于同一个启动子的调控之下,下游同时具有一个终止子。两个基因之间存在长度不等的间隔序列,如与乳糖代谢有关酶的基因。在距转录起始点-35和-10(转录起始点上游的核苷酸序列为“-”,下游的核苷酸序列为“+”)附近的序列都有