微载体的主要类型介绍

国际市场上出售的微载体商品的类型已经达十几种以上,包括液体微载体、大孔明胶微载体、聚苯乙烯微载体、PHEMA微载体、甲壳质微载体、聚氨酯泡沫微载体、藻酸盐凝胶微载体以及磁性微载体等。常用商品化微载体有三种:Cytodex1、2、3,Cytopore和Cytoline。......阅读全文

微载体的主要类型介绍

国际市场上出售的微载体商品的类型已经达十几种以上,包括液体微载体、大孔明胶微载体、聚苯乙烯微载体、PHEMA微载体、甲壳质微载体、聚氨酯泡沫微载体、藻酸盐凝胶微载体以及磁性微载体等。常用商品化微载体有三种:Cytodex1、2、3,Cytopore和Cytoline。

微载体的主要应用方向

●在细胞方面,如细胞群体、状态和类型。  ●在微载体方面,如微载体表面状态、吸附的大分子和离子;微载体表面光滑时细胞扩展快,表面多孔则扩展慢。  ●在培养环境中,如培养基组成、温度、pH、DC以及代谢废物等均明显影响细胞在微载体上的生长。如果所处条件最优,则细胞生长快;反之生长速度慢。  5. 微载

离子载体的作用和主要类型

大多数离子载体是细菌产生的抗生素,它们能够杀死某些微生物,其作用机制就是提高了靶细胞膜通透性,使得靶细胞无法维持细胞内离子的正常浓度梯度而死亡,所以离子载体并非是自然状态下存在于膜中的运输蛋白,而是人工用来研究膜运输蛋白的一个概念。根据改变离子通透性的机制不同,将离子载体分为两种类型:通道形成离子载

离子载体的功能及主要类型

离子载体(ionophore),是疏水性的小分子,可溶于双脂层,提高所转运离子的通透率,多为微生物合成,是微生物防御被捕食或与其它物种竞争的武器,离子载体也是以被动的运输方式运输离子,可分成可动离子载体(mobile ion carrier)和通道离子载体(channel former)两类:可动离

微载体的基本介绍

自Van Wezel用DEAE-Sephadex A 50 研制的第一种微载体问世以来,国际市场上出售的微载体商品的类型已经达十几种以上,包括液体微载体、大孔明胶微载体、聚苯乙烯微载体、PHEMA微载体、甲壳质微载体、聚氨酯泡沫微载体、藻酸盐凝胶微载体以及磁性微载体等。常用商品化微载体有三种:Cyt

离子载体的作用机制和主要类型

大多数离子载体是细菌产生的抗生素,它们能够杀死某些微生物,其作用机制就是提高了靶细胞膜通透性,使得靶细胞无法维持细胞内离子的正常浓度梯度而死亡,所以离子载体并非是自然状态下存在于膜中的运输蛋白,而是人工用来研究膜运输蛋白的一个概念。根据改变离子通透性的机制不同,将离子载体分为两种类型:通道形成离子载

微载体

实验方法原理以高浓度接种细胞和微珠,然后按照要求进行稀释、搅拌和取样。实验材料起始培养物仪器、耗材生长培养基微载体搅拌培养瓶磁力搅拌器实验步骤1. 按照所需最终培养液量的 1/3,以 2~3 g/L 混悬微珠。2. 用胰蛋白酶消化和计数细胞,以正常接种浓度的 3~5 倍将细胞接种到微珠悬液中。3.

微载体

            实验方法原理 以高浓度接种细胞和微珠,然后按照要求进行稀释、搅拌和取样。 实验材料 起始培养物

微载体

            实验方法原理 以高浓度接种细胞和微珠,然后按照要求进行稀释、搅拌和取样。 实验材料 起始培养物

微载体实验

实验方法原理 以高浓度接种细胞和微珠,然后按照要求进行稀释、搅拌和取样。实验材料 起始培养物仪器、耗材 生长培养基微载体搅拌培养瓶磁力搅拌器实验步骤 1. 按照所需最终培养液量的 1/3,以 2~3 g/L 混悬微珠。2. 用胰蛋白酶消化和计数细胞,以正常接种浓度的 3~5 倍将细胞接种到微珠悬液中

DNA微阵类型的介绍

  基因芯片的制作方式基本可分为以下几型:  Stanford型  由美国斯坦福大学开发的cDNA array的制作方法,将预先合成好的核酸探针布放于玻片载体上。 优点:设计较长的探针长度可增加专一性。 缺点:芯片密度较光罩法低,并须有良好的保存设计。  这种方法又可分为点制法与印制法。  点制法是

沉淀的主要类型介绍

沉淀可分为晶形沉淀和非晶形沉淀两大类型。晶形沉淀内部排列较规则,结构紧密,可生长成较大颗粒,易于沉降和过滤;非晶形沉淀颗粒很小,没有明显的晶格,易形成胶质粒子(colloid),易吸附杂质,难以过滤。对非晶形沉淀,通常在热、浓溶液中进行沉淀反应,同时加入大量电解质以加速沉淀微粒凝聚,防止形成胶体溶液

菌毛的主要类型介绍

  菌毛类型很多,根据菌毛功能可将其分为两大类:普通菌毛(Common pili)和性菌毛(Sex pili或Conjugal pili)。   普通菌毛  普通菌毛的功能是使菌体粘附至宿主细胞表面,在感染中起启动作用。在霍乱弧菌、致病性大肠杆菌、志贺杆菌、淋球菌等研究中,均发现菌株菌毛的粘附力和致

基因克隆的载体类型

①在宿主细胞中能保存下来并能大量复制,且对受体细胞无害,不影响受体细胞正常的生命活动。②有多个限制酶(Restriction enzymes)切点,而且每种酶的切点最好只有一个,如大肠杆菌pBR322就有多种限制酶的单一识别位点,可适于多种限制酶切割的DNA插入。③含有复制起始位点,能够独立复制;通

微载体的分类系统

生物反应器系统此技术大规模培养,细胞扩增的效率受到诸多因素的影响和限制,其中主要的限制性因素包括:细胞对剪切力的敏感性、氧的传递以及传代和扩大培养等。而研制的各种类型生物反应器系统则可针对上述限制性因素,为微载体细胞培养与扩增提供低剪切力、高氧传递效率、易于细胞传代等适宜的外部环境。已较多使用的微载

微载体培养的原理

   微载体培养技术(micro-carrierculturetechnique)于1967年被用于动物细胞大规模培养。经过三十余年的发展,该技术日趋完善和成熟,广泛应用于生产疫苗、基因工程产品等。    微载体是指直径60-250μm,能适用于贴壁细胞生长的微珠。一般是由天然葡聚糖或者各种合成的聚

微载体的应用原理

1.原理:其原理是将对细胞无害的颗粒-微载体加入到培养容器的培养液中,作为载体,使细胞在微载体表面附着生长,同时通过持续搅动使微载体始终保持悬浮状态。  贴壁依赖性细胞在微载体表面上的增殖,要经历黏附贴壁、生长和扩展成单层三个阶段。细胞只有贴附在固体基质表面才能增殖,故细胞在微载体表面的贴附是进一步

什么是微载体?

是指直径在60-250μm,能适用于贴壁细胞生长的微珠。一般是由天然葡聚糖或者各种合成的聚合物组成。

微载体细胞培养法介绍

(1)微载体选择:先用利用三种小量微载体做培养实验,观察细胞在一定时间内细胞的吸着率和计算细胞数,以得到最大量细胞为佳。(2)水化:称一定量的微载体放入容器中,按每克微载体加50~100ml的比例,加入无Ca2+和Mg2+的磷酸缓冲液(PBS),室温下放置应不少于3小时,并不时轻微搅动,然后再用新鲜

生物污染的主要类型介绍

一是霉菌,它是造成过敏性疾病的最主要原因二是来自植物的花粉,如上面提到的悬铃木花粉三是由人体、动物、土壤和植物碎屑携带的细菌和病毒四是尘螨以及猫、狗和鸟类身上脱落的毛发、皮屑。

囊包的主要类型介绍

囊包可分为下列各种类型。(1)保护囊包(resistance cyst德文 Schutzz-yste):多为淡水产及寄生性的,由于囊膜的物理性和化学性稳定坚固,所以能耐受外界的干燥、高温和寒冷。(2)休眠囊包或休眠孢子(resting cyst,res-ting spore德文Ruhezyste):

免疫应答的主要类型介绍

根据免疫应答识别的特点、获得形式以及效应机制,可分为固有性免疫(innate immunity)和适应性免疫(adaptive immunity)两大类。固有免疫亦称为先天性免疫或非特异性免疫,适应性免疫亦称获得性免疫或特异性免疫。

重组疫苗的主要类型介绍

一是DNA重组疫苗,以这一方式面世的第一种疫苗是乙型肝炎疫苗。该疫苗对乙型肝炎表面抗原HBsAg进行克隆扩增,应用重组DNA技术从酵母菌生产疫苗。二是通过消除和修饰病原微生物上已知的导致致病性基因来制备疫苗。以此方法研制的针对轮状病毒的第一代重组疫苗已在美国和芬兰进行临床试验,研究结果提示该疫苗对由

核移植的主要类型介绍

1、胚胎细胞核移植胚胎细胞核移植是用显微手术的方法分离出着床的早期胚胎细胞,将其单个细胞导入去除染色体的未受精的成熟的卵母细胞中,经过电融合,让该卵母细胞质和导入的胚胎细胞核融合、分裂、发育为胚胎。把该胚胎移植给受体,让其妊娠、产仔。如今,已经成功地通过胚胎细胞核移植,产生的动物有小鼠、兔、山羊、绵

反馈抑制的主要类型介绍

多价反馈抑制分支代谢途径中的多个终产物每一个单独过量时对共同途径中较早的一个酶不产生抑制作用,因而并不影响整个代谢进度,只有多个终产物同时过量才会对关键酶产生抑制作用。协同反馈抑制协同反馈抑制与多价反馈抑制相同的是要多个终产物同时过量才会对关键酶产生抑制作用。两者的不同点单一终产物过量时协同反馈抑制

l噬菌体载体的类型

插入型 (Insertion vectors )这种载体仅仅有一个可供外源DNA插入的克隆位点。如:λgt10 、 λgt11克隆能力小,不到10kb置换型 (Replacement vectors)这种载体具有两个对应的酶切克隆位点,在两个位点之间的λDNA区段是λ噬菌体的非必需序列,可以被外源插

微RNA的主要作用介绍

人类基因组计划结束后,人们发现编码蛋白质的基因只占总基因组的约2%。而占人类基因组95%的非编码序列竟是产生大量非编码RNA的源泉,这些非编码RNA主要充当调控者的角色,在细胞分化凋亡、生物发育、疾病发生等方面均起重要作用。其实,RNA比DNA更为古老,它组成了地球上最早的生命。生命起源初期,没有由

微载体培养的技术特点

●表面积/体积(S/V)大,因此单位体积培养液的细胞产率高;  ●把悬浮培养和贴壁培养融合在一起,兼有两者的优点;  ●可用简单的显微镜观察细胞在微珠表面的生长情况;  ●简化了细胞生长各种环境因素的检测和控制,重现性好;  ●培养基利用率较高;  ●放大容易;  ●细胞收获过程不复杂;  ●劳动强

微载体培养的技术方法

微载体培养是指微载体以微小颗粒作为细胞贴附的载体,可提供相当大的贴附面积,由于载体体积很小,比重较轻,在轻度搅拌下即可使得细胞悬浮在培养液内,最终能够使细胞在载体表面繁殖成单层的一种细胞培养技术。

微载体技术的培养优点

●表面积/体积(S/V)大,因此单位体积培养液的细胞产率高;●把悬浮培养和贴壁培养融合在一起,兼有两者的优点;●可用简单的显微镜观察细胞在微珠表面的生长情况;●简化了细胞生长各种环境因素的检测和控制,重现性好;●培养基利用率较高;●放大容易;●细胞收获过程不复杂;●劳动强度小;●培养系统占地面积和空