关于端粒酶的特殊结构介绍
端粒是染色体末端的一种特殊结构,它是由许多简单短重复序列和端粒结合蛋白(Telomere end-binding protein, TEBP)组成。在正常人体细胞中,可随着细胞分裂而逐渐缩短。 端粒是细胞必需的遗传组分,因为它能够保护和补偿染色体末端遗传信息的丢失,保护它不会被核酸酶识别而免遭降解。但是在复制过程中,端粒也因为复制机制的缺欠或者其他原因会缓慢地丢失,在新细胞中细胞每分裂一次,染色体顶端的端粒就缩短一次(细胞分裂一次其端粒的DNA丢失约30-200bp),当端粒不能再缩短时,细胞就无法继续分裂了。 进一步的研究表明,衰老细胞中的一些端粒丢失了大部分端粒重复序列。1990年,凯文·哈里(Calvin Harley)发现不同年龄的人的体细胞的寿命明显不同,其端粒的长度也不相同。是随着年龄的增长而缩短。细胞愈老,其端粒长度愈短;细胞愈年轻,端粒愈长。端粒与细胞老化有关系,因此原因用端粒阐述了新的人体衰老机制。 ......阅读全文
关于端粒酶的特殊结构介绍
端粒是染色体末端的一种特殊结构,它是由许多简单短重复序列和端粒结合蛋白(Telomere end-binding protein, TEBP)组成。在正常人体细胞中,可随着细胞分裂而逐渐缩短。 端粒是细胞必需的遗传组分,因为它能够保护和补偿染色体末端遗传信息的丢失,保护它不会被核酸酶识别而免遭
关于端粒酶的基本介绍
端粒酶(Telomerase),在细胞中负责端粒的延长的一种酶,是基本的核蛋白逆转录酶,可将端粒DNA加至真核细胞染色体末端,把DNA复制损失的端粒填补起来,使端粒修复延长,可以让端粒不会因细胞分裂而有所损耗,使得细胞分裂的次数增加。端粒在不同物种细胞中对于保持染色体稳定性和细胞活性有重要作用,
关于端粒酶的功效介绍
长生不老 美国德克萨斯大学西南医学中心的细胞生物学及神经系统科学教授杰里·谢伊和伍德林·赖特做了这样一项试验:在采集的包皮细胞(包皮环切术的附带产物)中导入某种基因,该基因可使细胞产生一种酶——端粒酶(Telomerase)。 一般来说,包皮细胞在变老之前可分裂60次左右。但在上述试验中,细
关于端粒酶的注意事项介绍
值得注意的是,恶性肿瘤细胞具有高活性的端粒酶(它能维持癌细胞端粒的长度,使其无限制扩增。关于癌细胞如何获得永生,1991年Harley提出端粒-端粒酶假说,认为正常细胞衰亡要经过第一致死期M1期(MortalityStage1)和第二期M2期(MortalityStage2)两个阶段。即在细胞有
端粒酶的结构和功能特点
端粒酶(Telomerase),在细胞中负责端粒的延长的一种酶,是基本的核蛋白逆转录酶,可将端粒DNA加至真核细胞染色体末端,把DNA复制损失的端粒填补起来,使端粒修复延长,可以让端粒不会因细胞分裂而有所损耗,使得细胞分裂的次数增加。端粒在不同物种细胞中对于保持染色体稳定性和细胞活性有重要作用,端粒
细菌的特殊结构
荚膜对细菌具有保护作用;致病作用;抗原性;鉴别细菌的依据之一鞭毛是运动器,具有抗原性并与致病性有关菌毛普通菌毛可促使细菌黏附于宿主细胞表面而致病;性菌毛参与F质粒的接合传递芽胞抵抗力强,耐高温。为休眠状态,内含生命物质,可以再生。通常以杀死芽胞作为灭菌指标
关于特殊染色的应用介绍
(1)器官硬化性疾病的观察:如肝硬变、心肌瘢痕的观察,胶原染色更易于观察诊断。 (2)瘢痕与淀粉样物质鉴别:前者胶原纤维染色为阳性,后者为阴性。 胶原纤维染色 胶原纤维染色 (3)骨纤维异常增殖病与骨纤维化的鉴别:利用胶原纤维染色可较易观察前者胶原纤维紊乱,纵横交错,后者较规则。
特殊结构探头
特殊结构对于诸如人体皮肤这样的半透明样品测量,必须能够得到不同穿透深度的反射信号。我们制作了包括许多光纤的光纤束,其外围是2个光纤环。这个探头的总长度是1.5米,包括350根100µm, UV/VIS光纤,分成5根分离光纤,都采用SMA905接头。
关于细胞凋亡Telemerase-Detection-(端粒酶检测)的介绍
这是相对来说推出较早,用得较多的一种方法。端粒酶是由RNA和蛋白组成的核蛋白,它可以自身RNA为模板逆转录合成端粒区重复序列,使细胞获得“永生化”。正常体细胞是没有端粒酶活性的,每分裂一次,染色体的端粒会缩短,这可能作为有丝分裂的一种时钟,表明细胞年龄、复制衰老或细胞凋亡的信号。研究发现,90%
细菌的基本结构与特殊结构
1.细菌的基本结构结构特点及功能细胞壁主要组分为肽聚糖,其功能是:①维持细菌形态;②参与细胞内外物质交换;③细胞壁上还带有多种抗原决定簇,决定细菌的抗原性;细胞膜功能:物质转运;生物合成;呼吸作用;分泌作用细胞质细菌新陈代谢的主要场所,胞质内含有核酸和多种酶系统,参与菌体内物质的合成代谢和分解代谢核
细菌的特殊结构:菌毛
细菌的特殊结构:菌毛是临床检验技师考试的部分内容,医学教育网搜集整理相关内容供大家参考。 细菌的特殊结构有荚膜、鞭毛、菌毛和芽胞。 菌毛:细菌表面有极其纤细的蛋白性丝状物,称为菌毛。菌毛比鞭毛更细,且短而直,硬而多,须用电镜才能看到。菌毛可分为普通菌毛和性菌毛两类。 (1)普通菌毛:该菌毛遍
细菌的特殊结构:荚膜
细菌的特殊结构:荚膜是临床检验技师考试的部分内容,医学教育网搜集整理相关内容供大家参考。 细菌的特殊结构有荚膜、鞭毛、菌毛和芽胞。 荚膜:荚膜是某些细菌在细胞壁外包绕的一层界限分明,且不易被洗脱的粘稠性物质,其成分多为糖类,少数为多肽或透明质酸等。其厚度≥0.2μm,为荚膜;厚度
细菌的特殊结构:鞭毛
细菌的特殊结构:鞭毛是临床检验技师考试的部分内容,医学教育网搜集整理相关内容供大家参考。 细菌的特殊结构有荚膜、鞭毛、菌毛和芽胞。 鞭毛:鞭毛是由细胞质伸出的蛋白性丝状物。弧菌、螺菌及部分杆菌具有鞭毛。鞭毛纤细,长3~20μm,直径仅l0~20nm,不能直接在光学显微镜下观察到。经特殊的鞭毛
关于特殊染色的医学价值介绍
现代病理学中免疫组织化学技术、电子显微镜技术以及其它细胞及分子生物学技术应用日益广泛,但由于这些技术要求一定的实验条件以及所需的试剂价格较为昂贵,对于一部分病人以及某一些基层医院是比较难以接受的。而组织化学技术则具有无需复杂的实验条件以及较为昂贵的试剂操作又比较简单的优势,在临床病理学诊断中具有
合成端粒酶主要蛋白结构被揭开
加利福尼亚大学洛杉矶分校的生化学家近日绘制出合成端粒酶(核糖体蛋白酶)的主要蛋白质及RNA(核糖核酸)的结构,从而揭示了这种对于医治癌症与衰老具有十分重要意义的酶的合成机理。研究成果刊登在7月13日出版的《分子细胞》杂志上。 长期以来,由于端粒酶与癌症及衰老有很大关系,所以一直吸引着科学家
肿瘤检测端粒酶介绍
端粒酶介绍: 端粒酶是一种由RNA和蛋白质组成的特殊反转录酶,与真核生物细胞DNA末端的端粒(一段特定的核苷酸序列及结构)的合成有关。正常体细胞的端粒长度是随着细胞的分裂逐渐缩短的,端粒酶活性增强,可维持端粒的长度不缩短,使细胞永久增殖而癌变。故端粒酶检测及其抑制剂可用于肿瘤诊断和治疗。端粒酶正常
肿瘤检测端粒酶介绍
端粒酶介绍: 端粒酶是一种由RNA和蛋白质组成的特殊反转录酶,与真核生物细胞DNA末端的端粒(一段特定的核苷酸序列及结构)的合成有关。正常体细胞的端粒长度是随着细胞的分裂逐渐缩短的,端粒酶活性增强,可维持端粒的长度不缩短,使细胞永久增殖而癌变。故端粒酶检测及其抑制剂可用于肿瘤诊断和治疗。端粒酶正常
关于细菌染色技术的类型—细菌特殊结构的染色法的基本介绍
细菌的特殊结构,如鞭毛、荚膜、细胞壁、芽孢及异染颗粒等,用普通染色法不易着色,故需用特殊染色法。 1、芽孢染色法:部分细菌能产生内孢子,这些孢子能抵制细菌染色液的进入,在革兰氏染色法涂片染色时,革兰氏阳性菌的芽孢呈现无色。虽然芽孢在革兰氏染色片中可以看到,但在不易清晰观察时,可用特殊的芽孢染色
关于派立明的特殊用药介绍
孕妇:没有研究派立明在孕妇中使用情况。动物实验显示有生殖毒性(参见5.3)。对人类的潜在危害还不得而知。除非明确的需要,孕妇不要使用派立明。 哺乳期妇女:现在还不知道布林左胺是否通过人类的乳汁排泌,但可通过小鼠的乳汁排泌。因此在母乳喂养时强烈推荐避免使用派立明。 儿童用药:没有派立明在18岁
关于特殊染色的基本信息介绍
为了显示与确定组织或细胞中的正常结构或病理过程中出现的异常物质、病变及病原体等,需要分别选用相应的显示这些成分的染色方法进行染色。包括:胶原纤维染色(Masson等)、网状纤维染色、弹力纤维染色、肌肉组织染色(磷钨酸苏木素)、脂肪染色(苏丹III)、糖原染色(PAS)、粘液染色(PAS)等。
关于眼眶疾病的特殊检查技术介绍
如X线片、眶血管造影、颈内动脉造影、超声波检查,以及电子计算机断层扫描检查(CT)磁共振成像等,进一步确定占位病变的部位,大小和性质,必要时还可直接采取活体组织作病理检查,以求获得最后诊断。眼眶疾病的治疗视病变性质而定。炎症性疾病主要用抗生素或皮质类固醇治疗。眼眶外伤早期主要是控制出血,预防感染
关于特殊染色的注意事项介绍
1、染色前: ①切出的石蜡切片要好,不能有皱褶或者刀痕,切片不能太厚。 ②捞片时,最好一张玻片捞一个组织,组织最好位于玻片的中间,美观的同时也利于脱蜡(有时二甲苯的液面低于组织片的时候,达不到脱蜡的目的)。 ③石蜡切片脱蜡到水时,一定要注意组织切片脱蜡务必要彻底(脱蜡时间不能太少)以使脱蜡
细菌的特殊结构有哪些
细菌的特殊结构:荚膜(Capsule)许多细菌胞壁外围绕一层较厚的粘性、胶冻样物质。大多数细菌(如肺炎球菌、脑膜炎球菌等)的荚膜由多糖组成。荚膜除对鉴别细菌有帮助外,还能保护细菌免遭吞噬细胞的吞噬和消化作用,因而与细菌的毒力有关。荚膜抗吞噬的机理还不十分清楚,可能由于荚膜粘液层比较光滑,不易被吞噬细
细菌的特殊结构:芽胞
细菌的特殊结构:芽胞是临床检验技师相关考试的部分内容,医学教育网搜集整理相关内容供大家参考。 细菌的特殊结构有荚膜、鞭毛、菌毛和芽胞。 芽胞:芽胞是某些细菌(主要是革兰阳性杆菌)在一定条件下,细胞质、核质脱水浓缩而形成的圆形或椭圆形的小体。芽胞不能分裂繁殖,是细菌的休眠体。芽胞若遇适宜的环境
细菌的特殊结构与功能
细菌的特殊结构主要有鞭毛、菌毛、荚膜和芽胞。鞭毛是细菌的运动器官,由简单的角蛋白-肌蛋白组成。菌毛分为普通菌毛及性菌毛两种,普通菌毛能与宿主细胞表面的菌毛受体相结,发挥粘附作用,而性菌毛中空呈管状,能在细菌之间通过接合传递遗传物质,故性菌毛与细菌的遗传变异有关医`学教育网搜集整理。荚膜是细胞壁外的一
细菌的特殊结构有哪些
细菌的特殊结构有荚膜、鞭毛、芽孢,荚膜是胞壁外面覆盖着的一层疏松透明粘性物质,用于抵抗干燥,免受吞噬,堆积某些代谢废物等,鞭毛是某些细菌表面一种纤细呈波状的丝状物。 荚膜对细菌的生存具有重要意义,细菌不仅可利用荚膜抵御不良环境;保护自身不受白细胞吞噬;而且能有选择地黏附到特定细胞的表面上,表现
细菌的基本结构和特殊结构有哪些
基本结构:细胞壁、细胞膜、细胞质、原核(核物质);特殊结构:鞭毛、菌毛、荚膜、芽孢等等。 细菌(英文:germs;学名:bacteria)广义的细菌即为原核生物是指一大类细胞核无核膜包裹,只存在称作拟核区(nuclearregion)(或拟核)的裸露DNA的原始单细胞生物,包括真细菌(euba
关于特殊型式的卵裂细胞谱系的介绍
以蛔虫为例,德国生物学家T·H·博韦里研究了马副蛔虫卵的分裂过程。受精卵第1次分为上下两个裂球。其中居于动物极者称AB,植物极者称P1。在第2次分裂时两个卵裂面的方位不同,AB按胚胎的头尾轴分为A和B,P1仍分裂为上下两个裂球,上面的裂球名 EMST,下面的裂球名 P2。 AB分裂过程中,由染
简介光电池的特殊结构
光电池是一种特殊的半导体二极管,能将可见光转化为直流电。有的光电池还可以将红外光和紫外光转化为直流电。光电池是太阳能电力系统内部的一个组成部分,太阳能电力系统在替代电力能源方面正有着越来越重要的地位。最早的光电池是用掺杂的氧化硅来制作的,掺杂的目的是为了影响电子或空穴的行为。其它的材料,例如CI
端粒酶和人体衰老的关系介绍
1990年起Calvin Harley把端粒与人体衰老挂上了钩。他讲了三点,将它记录如下: 第一、细胞愈老,其端粒长度愈短;细胞愈年轻,端粒愈长,端粒与细胞老化有关系。衰老细胞中的一些端粒丢失了大部分端粒重复序列。当细胞端粒的功能受损时,出现衰老。而当端粒缩短至关键长度后,衰老加速,临近死