蛋白酪氨酸磷酸酶参与干细胞分化的作用

捷克马萨利克大学医学院科学家在《细胞 干细胞》上载文认为,PTP-1B与一些重要的细胞过程有关,PTP-1B与此前认为对干细胞分化有关的两种分子一样,参与决定干细胞的分化方向,并可能是关键的一种分子。在胚胎发育初期干细胞分化过程中,PTP-1B活跃的地方,干细胞将发育为内脏器官,活性低的地方,干细胞将发育为神经细胞。......阅读全文

蛋白酪氨酸磷酸酶参与干细胞分化的作用

  捷克马萨利克大学医学院科学家在《细胞 干细胞》上载文认为,PTP-1B与一些重要的细胞过程有关,PTP-1B与此前认为对干细胞分化有关的两种分子一样,参与决定干细胞的分化方向,并可能是关键的一种分子。在胚胎发育初期干细胞分化过程中,PTP-1B活跃的地方,干细胞将发育为内脏器官,活性低的地方,干

蛋白酪氨酸磷酸酶参与胰岛素信号转导的作用机理

  1990年Cicirelli等首次提出PTP-1B与胰岛素信号转导有关,向爪蟾卵母细胞中注射微量的PTP-1B后,阻碍了胰岛素对S6肽的磷酸化,并延迟了胰岛素促进卵母细胞的成熟作用。这项具有里程碑标志的研究揭示出了PTP-1B在胰岛素信号转导中的负调节作用。PTP1B专一水解芳香族磷酸,如磷酸化

蛋白酪氨酸磷酸酶

蛋白酪氨酸磷酸酶(PTP)是一组酶,它们具有具有磷酸酪氨酸特异性磷酸水解酶活性的催化结构域。PTP能够以正向和负向方式改变受体酪氨酸激酶的活性。PTPs可以使RTKs上激活的磷酸化酪氨酸残基去磷酸化,这实际上导致信号终止。涉及PTP1B的研究表明,PTP1B是一种广为人知的参与细胞周期和细胞因子受体

蛋白酪氨酸磷酸酶的简介

  1988年Tonks等首次在人的胎盘细胞中分离和纯化了第一个37kDa的蛋白酪氨酸磷酸酶1B(ProteinTyrosine Phosphatase-1B,PTP-1B)。  PTP1B是一种胞内PTP,位于内质网,在人体的各种组织中都有表达;其与蛋白酪氨酸激酶(ProteinTyrosineK

磷酸酶制备实验——膜蛋白酪氨酸磷酸酶(PTP)

试剂、试剂盒提取缓冲液仪器、耗材微型离心机Superose 6 柱子实验步骤1. 用 1 ml 含有 1% NP-40 去污剂的提取缓冲液提取颗粒部分(按照上面组织/细胞的制备和提取所述方法准备)15 分钟,用一个小匀浆器固定在微型离心管里匀浆或者通过微量移液器吸头尖反复吸入和排出悬浮液以确保沉淀分

关于蛋白酪氨酸磷酸酶的研究方法介绍

  以5 mmol/L 对硝基苯磷酸二钠(pNPP)为反应底物, 在0.01 mol/L NaAc-HAc pH5.0, 1 mmol/L EDTA钠盐体系中, 加入不同量的PTP1Bc蛋白, 37°C反应10 min, 加 0.2 mol/L NaOH终止反应, 用分光光度计测A405。同时做含P

关于蛋白酪氨酸磷酸酶的基本结构介绍

  PTP-1B广泛存在于脂肪细胞、肝组织细胞、肌组织细胞和上皮细胞多个组织中。荧光免疫原位杂交法表明,PTP-1B主要定位于胞浆内质网组织中,以C末端的35个特异性氨基酸与内质网结合,其N末端含有半胱氨酸和精氨酸残基,精氨酸残基的催化中心朝向胞浆。  PTP-1B含有一段240个氨基酸残基所组成的

蛋白酪氨酸磷酸酶抑制剂的概述

  PTP-1B催化功能域中半胱氨酸的巯基对酶的活性至关重要,它需保持还原状态,任何使其氧化的化合物都会导致酶失去活性。Xie等[7]认为PTP-1B抑制剂可通过削弱PTP-1B对胰岛素受体的去磷酸化作用,提高胰岛素受体及其底物-1的磷酸化水平,起到类胰岛素和胰岛素增敏的作用。  钒酸盐和过氧钒类化

简述蛋白酪氨酸磷酸酶在胃癌细胞中的表达

  (1)PTP1B在胃癌组织和细胞中均过度表达。在胃癌组织中,PTP1B的表达与胃癌的TNM分期有明显的相关性;  (2)PTP1B在胃癌中的表达有促进胃癌细胞的增殖和肿瘤发展的作用;  (3)PTP1B在胃癌中的作用可能与Akt、Erkl/2、FAK蛋白的磷酸化水平和Src活性的改变有关;  (

参与淋巴细胞激活的蛋白磷酸酶主要是?

蛋白磷酸酶的作用和蛋白激酶相反。根据脱磷酸化的氨基酸残基的不同,蛋白磷酸酶也分成蛋白酪氨酸磷酸酶(PTP,PTPase)和丝氨酸/苏氨酸磷酸酶。参与淋巴细胞激活的蛋白磷酸酶主要有:①CD45:该分子胞内段的两个结构域发挥PTP的作用,因而CD45属于受体型蛋白酪氨酸磷酸酶,在对抗瓢kPTK的作用和启

新技术可找到干细胞分化的关键蛋白

  就像人类要做选择一样,干细胞也有一个“决定”过程,选择自己是变成某种特殊类型的细胞,还是继续保持“多能”的灵活性。据美国物理学家组织网4月27日报道,美国布朗大学研究人员发明了一种名为MEGA转换的技术,能分析关键转录因子的相互作用,有助于再生医学研究更好地理解干细胞的“多能性”。该研究近日发表

Cell子刊:干细胞正确分化的关键蛋白

  机体中一个胚胎干细胞可以分化成为两百多种类型的特化细胞,这一分化过程受到基因活性的严格调控。如果这一调控发生故障,发育过程中细胞就无法正确分化,并且可能使已分化细胞转变为癌细胞。哥本哈根大学的研究发现,Fbxl10分子在胚胎干细胞分化中起着关键作用,该分子可能成为癌症治疗的新靶标。文章发表在Ce

蛋白磷酸酶的作用和分类

蛋白磷酸酶的作用和蛋白激酶相反。根据脱磷酸化的氨基酸残基的不同,蛋白磷酸酶也分成蛋白酪氨酸磷酸酶(PTP,PTPase)和丝氨酸/苏氨酸磷酸酶。参与淋巴细胞激活的蛋白磷酸酶主要有:①CD45:该分子胞内段的两个结构域发挥PTP的作用,因而CD45属于受体型蛋白酪氨酸磷酸酶,在对抗瓢kPTK的作用和启

关于酪氨酸蛋白激酶的作用介绍

  PTK的活化是启动DNA合成和细胞增殖中多细胞反应的关键信号,不少反转录病毒致癌基因的编码蛋白以及多种生长因子跨膜受体的胞内部分都有PTK活性,受体PTK不但参与激素和生长因子等胞外信息的传递,还和细胞的恶变和增殖有关。因此,PTK在肿瘤的发生、发展过程中有着极其重要的作用。  因此酪氨酸蛋白激

酪氨酸蛋白激酶的结构及作用

酪氨酸蛋白激酶Lyn是人类中由LYN基因编码的蛋白质。 Lyn是Src蛋白酪氨酸激酶家族的成员,该蛋白酪氨酸激酶主要在造血细胞,神经组织肝脏和脂肪组织中表达。在各种造血细胞中,Lyn已成为参与细胞活化调节的关键酶。 在这些细胞中,少量LYN与细胞表面受体蛋白相关,包括B细胞抗原受体(BCR),CD4

关于骨桥蛋白参与体内代谢的作用

  骨桥蛋白与血管重塑  以往认为骨桥蛋白的主要作用是参与骨形成 ,近年来发现其在心血管系统特别是血管重塑过程中发挥重要调节作用。其作用将为临床治疗PTCA后再狭窄、高血压及动脉粥样硬化等引起的血管重塑提供新的策略。 [18]  OPN与免疫系统  OPN在淋巴细胞,包括T细胞及NK细胞亚群,被非特

分子伴侣参与蛋白运送的作用介绍

  在蛋白跨膜运送过程中,也有分子伴侣的参与。核糖体上新合成的多肽在定向跨膜运送到不同细胞器时,要维持非折叠状态。分子伴侣Hsp70家族在蛋白移位中就能打开前体蛋白的折叠,这时跨膜蛋白疏水基团外露,分子伴侣能够识别并与之结合,保护疏水面,防止相互作用而凝聚,直至跨膜运送开始。跨膜运送后,分子伴侣又参

干细胞的分化性

  胚胎干细胞具有万能分化性(pluripotency)功能,特点是可以细胞分化(Cellular differentiation)成多种组织的能力,但无法独自发育成一个个体。它可以差转成为外胚层、中胚层及内胚层三种胚层的成员,然后再差转成为人体的220多种细胞种类。  万能分化性是胚胎干细胞与在成

干细胞分化性

  胚胎干细胞具有万能分化性(pluripotency)功能,特点是可以细胞分化(Cellular differentiation)成多种组织的能力,但无法独自发育成一个个体。它可以差转成为外胚层、中胚层及内胚层三种胚层的成员,然后再差转成为人体的220多种细胞种类。  万能分化性是胚胎干细胞与在成

干细胞分化路径

传统观点认为细胞进行分化时,路径和目的地是统一的,由固定的细胞信号通路决定。然而来自5月底《自然》(Nature)杂志的一项新的研究报告表明,干细胞分化路径是通过基因的选择性行为形成的一系列分化网络路径,但是分化终点却是相对固定的。研究人员用了一个形象的比喻:就如同山上的一块石头能够通过无限可能的路

如何参与促进骨髓间充质干细胞向神经元样细胞的分化?

  近来的研究表明,microRNA在干细胞自我更新及其分化中发挥重要的调节作用。来自中国医科大学附属第一医院的邹德峰博士所在课题组认为,microRNA可能参与了干细胞定向分化为神经元的过程,可能是定向诱导分化的重要靶点。研究设计对骨髓间充质干细胞与神经干细胞或神经元差异最明显的microRNA进

受体酪氨酸激酶的调控调节

受体酪氨酸激酶(RTK)途径受各种正反馈回路的严格调节。 因为RTK协调多种细胞功能,例如细胞增殖和分化,所以必须对它们进行调节以防止细胞功能发生严重异常,例如癌症和纤维化。 蛋白酪氨酸磷酸酶蛋白质酪氨酸磷酸酶(PTP)是一组具有磷酸酪氨酸特异性磷酸水解酶活性的催化结构域的酶。PTP能够以正向和负向

RTKs介导的信号通路调控功能介绍

受体酪氨酸激酶(RTK)途径受各种正反馈回路的严格调节。 因为RTK协调多种细胞功能,例如细胞增殖和分化,所以必须对它们进行调节以防止细胞功能发生严重异常,例如癌症和纤维化。蛋白酪氨酸磷酸酶蛋白质酪氨酸磷酸酶(PTP)是一组具有磷酸酪氨酸特异性磷酸水解酶活性的催化结构域的酶。PTP能够以正向和负向改

关于受体酪氨酸激酶的调控的介绍

  受体酪氨酸激酶(RTK)途径受各种正反馈回路的严格调节。 因为RTK协调多种细胞功能,例如细胞增殖和分化,所以必须对它们进行调节以防止细胞功能发生严重异常,例如癌症和纤维化。  1、蛋白酪氨酸磷酸酶  蛋白质酪氨酸磷酸酶(PTP)是一组具有磷酸酪氨酸特异性磷酸水解酶活性的催化结构域的酶。PTP能

受体酪氨酸激酶的调控相关介绍

  受体酪氨酸激酶(RTK)途径受各种正反馈回路的严格调节。因为RTK协调多种细胞功能,例如细胞增殖和分化,所以必须对它们进行调节以防止细胞功能发生严重异常,例如癌症和纤维化。  蛋白酪氨酸磷酸酶  蛋白质酪氨酸磷酸酶(PTP)是一组具有磷酸酪氨酸特异性磷酸水解酶活性的催化结构域的酶。PTP能够以正

信号转导在神经干细胞分化中的作用

  信号转导在神经干细胞分化中十分重要。作为一种信号传导途径,Notch信号传导系统尚未完全阐明。认为Notch受体是一种整合型膜蛋白,是一个保守的细胞表面受体,它通过与周围配体接触而被激活,其信号传导途径开始于Notch受体与配体结合后其胞浆区从细胞膜上脱落,并向细胞核转移,将信号传递给下游信号分

成体干细胞的分化来源

研究人员已经在多种组织和器官内发现有成体干细胞的存在。关于成体干细胞,有一点是非常重要的:在组织内只含有极少量的干细胞。研究人员认为,干细胞存在于组织的特定区域内,从而在数年内都维持静止休眠状态――也就是保持不分裂的状态,直到组织受到损伤或发生疾病时被激活,才开始分裂。已经报道的含有干细胞的成体组织

干细胞的增殖和分化

干细胞的增殖和分化需要诱导相应的增殖和诱导因子。这一领域的研究进展迅速。科学家已经掌握了大量的细胞增殖和分化因子,并能够制造它们。干细胞很容易分化成其他细胞,如何在体外扩增过程中保持未分化的细胞?已经做出了许多努力,例如添加白血病抑制因子等,以抑制干细胞的分化,但仍需要进一步研究抑制干细胞分化的各种

毛囊干细胞的分化潜能

  毛囊干细胞具有很高的增殖潜能,在体外培养时呈克隆性生长,可诱导分化为神经元细胞,神经胶质细胞,平滑肌细胞和黑色素细胞等细胞,而植入体内则可分化形成神经元、黑色素细胞和角化细胞等。

造血干细胞的分化

  一、多能干细胞  多能干细胞是由Till和McCulloch等在60年代初,应用脾集落形成细胞定量法,首先在小鼠体内证明的。他们给经射线照射的小鼠输入同系鼠骨髓细胞,在10~14天后在脾内形成可见的结节,它是由单一骨髓细胞发育分化而成的细胞集落,称之为脾集落形成单位(colony formi