超临界流体色谱技术的研究与发展

超临界流体色谱技术是20世纪80年代发展起来的一种崭新的色谱技术.由于它具有气相和液相所没有的优点,并能分离和分析气相和液相色谱不能解决的一些对象,应用广泛,发展十分迅速.据Chester估计,至今约有全部分离的25%涉及难以对付的物质,通过超临界流体色谱能取得较为满意的结果.......阅读全文

超临界流体色谱技术的研究与发展

超临界流体色谱技术是20世纪80年代发展起来的一种崭新的色谱技术.由于它具有气相和液相所没有的优点,并能分离和分析气相和液相色谱不能解决的一些对象,应用广泛,发展十分迅速.据Chester估计,至今约有全部分离的25%涉及难以对付的物质,通过超临界流体色谱能取得较为满意的结果.

超临界流体沉积技术的研究与应用

本文对超临界流体技术的研究现状及进展作了简要综述和分析。就研究方向而言,超临界流体技术在超细材料、新型药品、生化技术等重大领域的应用前景已引起广泛的关注,并成为研究的热点。在与之相关的基础理论方面,对其机理和过程的模型化描述是目前的一个难题,其研究不仅是超临界流体技术走向应用的关键,而且具有十分重要

超临界流体色谱超临界流体色谱联用

超临界流体色谱-超临界流体色谱联用(SFC-SFC)的接口也有多通阀切换和无阀气控切换两种方式。1990年Lee用两个多通阀联接,由微填充毛细管柱和毛细管柱组成的超临界流体色谱! 超临界流体色谱联用系统(图11-4-28),并用此系统分析了煤焦油中的多环芳烃。1993年Lee又利用无阀气控切

超临界流体萃取与超临界流体色谱有什么关系吗

所谓超临界e799bee5baa6e79fa5e9819331333363363366流体,是指物体处于其临界温度和临界压力以上时的状态.这种流体兼有液体和气体的优点,密度大,粘稠度低,表面张力小,有极高的溶解能力,能深入到提取材料的基质中,发挥非常有效的萃取功能.而且这种溶解能力随着压力的升高而急

超临界流体萃取与超临界流体色谱有什么关系吗

所谓超临界流体,是指物体处于其临界温度和临界压力以上时的状态.这种流体兼有液体和气体的优点,密度大,粘稠度低,表面张力小,有极高的溶解能力,能深入到提取材料的基质中,发挥非常有效的萃取功能.而且这种溶解能力随着压力的升高而急剧增大.这些特性使得超临界流体成为一种好的萃取剂.而超临界流体萃取,就是利用

超临界流体萃取技术的发展现状

  超临界流体萃取是指以超临界流体(见p-V-T关系)为溶剂,从固体或液体中萃取可溶组分的分离操作。  最早将 超临界CO2萃取技术应用于大规模生产的是美国通用食品公司,之后法、英、德等国也很快将该技术应用于大规模生产中。90年代初, 中国开始了超临界萃取技术的产业化工作,发展速度很快。实现了 超临

超临界流体色谱法的超临界流体的特性

  超临界流体具有对于分离极其有利的物理性质.它们的这些性质恰好介于气体和液体之间.超临界流体的扩散系数和粘度接近于气相色谱,因此溶质的传质阻力小,可以获得快速高效分离.另一方面,其密度与液相色谱类似,这样就便于在较低温度下分离和分析热不稳定性,相对分子质量大的物质.另外,超临界流体的物理性质和化学

超临界流体色谱技术的基本概念

超临界流体色谱技术是20世纪80年代发展起来的一种崭新的色谱技术.由于它具有气相和液相所没有的优点,并能分离和分析气相和液相色谱不能解决的一些对象,应用广泛,发展十分迅速.据Chester估计,至今约有全部分离的25%涉及难以对付的物质,通过超临界流体色谱能取得较为满意的结果.

超临界流体色谱简述

    超临界流体作为化工分析行业使用较多的物质,根据超临界流体技术而发展和完善的超临界色谱又是怎么一回事,它与寻常色谱又有哪些不同。   超临界流体本身具有溶解能力比一般气体大,扩散速度又比有机物快、黏度与表面张力也比有机物溶剂低的特点。而所谓超临界流体色谱(SFC)便是利用超临界流体的特点,通过

超临界流体色谱的应用

  1.聚苯醚低聚物的分析  色谱柱:10m× 63μm i.d.  毛细管柱,  固定相:键合二甲基聚硅氧烷;  流动相:CO2 ;柱温:120 C;  程序升压;  2.甘油三酸酯的分析  四种组分仅双键数目和位置不同,难分离;  色谱柱:DB-225 SFC毛细管柱;  流动相: CO2 ;从

超临界流体色谱的应用

1.聚苯醚低聚物的分析色谱柱:10m× 63μm i.d.毛细管柱,固定相:键合二甲基聚硅氧烷;流动相:CO2 ;柱温:120 C;程序升压;2.甘油三酸酯的分析四种组分仅双键数目和位置不同,难分离;色谱柱:DB-225 SFC毛细管柱;流动相: CO2 ;从15MPa程序升压到27MPa;2.5h

关于超临界流体萃取技术超临界流体萃取的特点

  1)超临界流体 CO2萃取与化学法萃取相比有以下突出的优点:  (1)可以在接近室温(35-40℃)及CO2气体笼罩下进行提取,有效地防止了热敏性物质的氧化和逸散。因此,在萃取物中保持着 药用植物的全部成分,而且能把高沸点,低 挥发度、易 热解的物质在其沸点温度以下萃取出来;  (2)使用SFE

超临界流体的发展历史介绍

  超临界流体具有溶解其他物质的特殊能力,1822年法国医生Cagniard首次发表物质的临界现象,并在1879年即被Hannay和Hogarth二位学者研究发现无机盐类能迅速在超临界乙醇中溶解,减压后又能立刻结晶析出.但在当时由于技术,装备等原因未能更加深入地研究.时至20世纪30年代,Pilat

超临界流体的历史发展介绍

  超临界流体具有溶解其他物质的特殊能力,1822年法国医生Cagniard首次发表物质的临界现象,并在1879年即被Hannay和Hogarth二位学者研究发现无机盐类能迅速在超临界乙醇中溶解,减压后又能立刻结晶析出.但在当时由于技术,装备等原因未能更加深入地研究.时至20世纪30年代,Pilat

超临界流体技术的技术优点

由于超临界流体的特殊物理化学性质,超临界流体技术的应用领域不断扩展,超临界流体除了应用于传质萃取外,还可用于颗粒制造、环境治理、化学反应和节能方面。从超临界流体的基础数据、工艺流程到装置设备等方面的研究也不断地深入和全面,但对超临界流体萃取本身的认识不够透彻,在化学反应、传质与传热过程的理论未达成共

超临界流体色谱法

超临界流体色谱法(Supercritical Fluid Chromatography ,SFC)是以超临界流体作为流动相的一种色谱方法·所谓超临界流体,是指既不是气体也不是液体的一些物质,它们的物理性质介于气体和液体之间。

超临界流体色谱仪

  超临界流体色谱系统是一种用于化学领域的分析仪器,于2009年7月15日启用。  技术指标  CO2流速:0.5-10ml/min;改性剂流速:0.01-10ml/min; 基线噪声: ±2.0×10-5 AU/cm@220nm, 基线漂移: 3.0×10-4 AU/小时; 工作压力: 400ba

超临界流体色谱法

超临界流体色谱法 supercritical fluid chromatography 以超临界流体作为流动相(固定相与液相色谱类似)的色谱方法。超临界流体即为处于临界温度及临界压力以上的流体,它具有对分离十分有利的物化性质,其扩散系数和黏度接近于气体,因此溶质的传质阻力较小,可以获得快速高效的分离

超临界流体色谱法

一、超临界流体色谱的定义 使用超过临界温度和临界压力的流体(Supercritical Fluid)作流动相进行分析的色谱法称为超临界流体色谱法。即流动相不是气体、也不是液体,而是单一态的流体。 二、超临界流体色谱(SFC)的特点 SFC方法的产生及其发展,是由它本身的特点所决定的,具有与GC及LC

超临界流体色谱法

色谱是用于样品组分分离的一种方法,组分在两相间进行分配,一相为固定相,另一相为流动相。固定相可以是固体或涂于固体上的液体,而流动相可以是气体、液体或超临界流体。超临界流体色谱(Supercritical fluid chromatography) 就是以超临界流体做流动相依靠流动相的溶剂化能力来进行

超临界流体色谱法

一、超临界流体色谱的定义使用超过临界温度和临界压力的流体(Supercritical Fluid)作流动相进行分析的色谱法称为超临界流体色谱法。即流动相不是气体、也不是液体,而是单一态的流体。二、超临界流体色谱(SFC)的特点SFC方法的产生及其发展,是由它本身的特点所决定的,具有与GC及LC方法显

超临界流体色谱柱的特点

超临界流体色谱柱所具备的特点:  1、采用低粘度的超临界流体作为流动相,可以设置高于液相色谱的方法流速,使分离速度快于液相色谱,效率更高。  2、由于超临界流体的扩散系数介于气体和液体之间,所以峰展宽相比气体流动相更小。  3、不同压力下对样品的溶解能力不同,样品溶解度随超临界流体的密度增加而增加。

液相色谱超临界流体色谱联用

当复杂样品中欲测组分不易挥发或热不稳定,用液相色谱初步分离后的欲测组分不能用气相色谱分析,则可用超监界流体色谱取代气相色谱,组成液相色谱-超临界流体色谱联用(LC-SFC)系统,其接口可采用液相色谱-气相色谱联用时的保留间隙技术,其典型流路如图11-4-30所示。1991年Moulder用此系统分析

超临界流体萃取技术的技术特点

1)超临界流体CO2萃取与化学法萃取相比有以下突出的优点:(1)可以在接近室温(35-40℃)及CO2气体笼罩下进行提取,有效地防止了热敏性物质的氧化和逸散。因此,在萃取物中保持着药用植物的全部成分,而且能把高沸点,低挥发度、易热解的物质在其沸点温度以下萃取出来;(2)使用SFE是最干净的提取方法,

超临界流体萃取技术的技术特点

1)超临界流体CO2萃取与化学法萃取相比有以下突出的优点:(1)可以在接近室温(35-40℃)及CO2气体笼罩下进行提取,有效地防止了热敏性物质的氧化和逸散。因此,在萃取物中保持着药用植物的全部成分,而且能把高沸点,低挥发度、易热解的物质在其沸点温度以下萃取出来;(2)使用SFE是最干净的提取方法,

超临界流体萃取技术的技术特点

1)超临界流体CO2萃取与化学法萃取相比有以下突出的优点:(1)可以在接近室温(35-40℃)及CO2气体笼罩下进行提取,有效地防止了热敏性物质的氧化和逸散。因此,在萃取物中保持着药用植物的全部成分,而且能把高沸点,低挥发度、易热解的物质在其沸点温度以下萃取出来;(2)使用SFE是最干净的提取方法,

超临界流体萃取技术介绍

超临界流体萃取是用超临界流体作为萃取剂,从各种复杂的样品中,把所需要的组分分离提取出来的一种分离提取技术。超临界流体萃取技术用于色谱样品的处理中,可从复杂的样品中将预测组分分离提取出来,制备成合适于色谱分析的样品。超临界流体的密度与液体相近,与液体一样很容易溶解其他物质;另一方面,超临界流体的黏度略

超临界流体萃取技术概述

1、技术原理超临界流体萃取分离过程的原理是利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。当然,对应各压力范围所得到的萃取物不可能是单

超临界流体萃取技术(SFE)

超临界流体(SCF)是温度与压力均在其临界点之上的流体,性质介于气体和液体之间,有与液体相接近的密度,与气体相接近的粘度及高的扩散系数,故具有很高的溶解能力及好的流动、传递性能,可代替传统的有毒、易燃、易挥发的有机溶剂。最常用的SCF-CO2由于具有临界条件温和(Tc=31.3℃.Pc=7.48×1

超临界流体萃取技术介绍

超临界流体萃取是用超临界流体作为萃取剂,从各种复杂的样品中,把所需要的组分分离提取出来的一种分离提取技术。超临界流体萃取技术用于色谱样品的处理中,可从复杂的样品中将预测组分分离提取出来,制备成合适于色谱分析的样品。超临界流体的密度与液体相近,与液体一样很容易溶解其他物质;另一方面,超临界流体的黏度略