超临界流体色谱法的超临界流体的特性
超临界流体具有对于分离极其有利的物理性质.它们的这些性质恰好介于气体和液体之间.超临界流体的扩散系数和粘度接近于气相色谱,因此溶质的传质阻力小,可以获得快速高效分离.另一方面,其密度与液相色谱类似,这样就便于在较低温度下分离和分析热不稳定性,相对分子质量大的物质.另外,超临界流体的物理性质和化学性质,如扩散,粘度和溶剂力等,都是密度的函数.因此,只要改变流体的密度,就可以改变流体的性质,从类似气体到类似液体,无需通过气液平衡曲线.超临界流体色谱中的程序升密度相当于气相色谱中程序升温度和液相色谱中的梯度淋洗.......阅读全文
超临界流体色谱法的超临界流体的特性
超临界流体具有对于分离极其有利的物理性质.它们的这些性质恰好介于气体和液体之间.超临界流体的扩散系数和粘度接近于气相色谱,因此溶质的传质阻力小,可以获得快速高效分离.另一方面,其密度与液相色谱类似,这样就便于在较低温度下分离和分析热不稳定性,相对分子质量大的物质.另外,超临界流体的物理性质和化学
超临界流体的特性
超临界流体具有对于分离极其有利的物理性质.它们的这些性质恰好介于气体和液体之间.超临界流体的扩散系数和粘度接近于气相色谱,因此溶质的传质阻力小,可以获得快速高效分离.另一方面,其密度与液相色谱类似,这样就便于在较低温度下分离和分析热不稳定性,相对分子质量大的物质.另外,超临界流体的物理性质和化学性质
超临界流体的特性
超临界流体具有对于分离极其有利的物理性质.它们的这些性质恰好介于气体和液体之间.超临界流体的扩散系数和粘度接近于气相色谱,因此溶质的传质阻力小,可以获得快速高效分离.另一方面,其密度与液相色谱类似,这样就便于在较低温度下分离和分析热不稳定性,相对分子质量大的物质.另外,超临界流体的物理性质和化学性质
超临界流体的特性
超临界流体具有对于分离极其有利的物理性质.它们的这些性质恰好介于气体和液体之间.超临界流体的扩散系数和粘度接近于气相色谱,因此溶质的传质阻力小,可以获得快速高效分离.另一方面,其密度与液相色谱类似,这样就便于在较低温度下分离和分析热不稳定性,相对分子质量大的物质.另外,超临界流体的物理性质和化学性质
关于超临界流体色谱法的流体特性的介绍
超临界流体具有对于分离极其有利的物理性质。它们的这些性质恰好介于气体和液体之间。超临界流体的扩散系数和粘度接近于气相色谱,因此溶质的传质阻力小,可以获得快速高效分离。另一方面,其密度与液相色谱类似,这样就便于在较低温度下分离和分析热不稳定性,相对分子质量大的物质。另外,超临界流体的物理性质和化学
超临界流体色谱法
超临界流体色谱法(Supercritical Fluid Chromatography ,SFC)是以超临界流体作为流动相的一种色谱方法·所谓超临界流体,是指既不是气体也不是液体的一些物质,它们的物理性质介于气体和液体之间。
超临界流体色谱法
超临界流体色谱法 supercritical fluid chromatography 以超临界流体作为流动相(固定相与液相色谱类似)的色谱方法。超临界流体即为处于临界温度及临界压力以上的流体,它具有对分离十分有利的物化性质,其扩散系数和黏度接近于气体,因此溶质的传质阻力较小,可以获得快速高效的分离
超临界流体色谱法
一、超临界流体色谱的定义使用超过临界温度和临界压力的流体(Supercritical Fluid)作流动相进行分析的色谱法称为超临界流体色谱法。即流动相不是气体、也不是液体,而是单一态的流体。二、超临界流体色谱(SFC)的特点SFC方法的产生及其发展,是由它本身的特点所决定的,具有与GC及LC方法显
超临界流体色谱法
色谱是用于样品组分分离的一种方法,组分在两相间进行分配,一相为固定相,另一相为流动相。固定相可以是固体或涂于固体上的液体,而流动相可以是气体、液体或超临界流体。超临界流体色谱(Supercritical fluid chromatography) 就是以超临界流体做流动相依靠流动相的溶剂化能力来进行
超临界流体色谱法
一、超临界流体色谱的定义 使用超过临界温度和临界压力的流体(Supercritical Fluid)作流动相进行分析的色谱法称为超临界流体色谱法。即流动相不是气体、也不是液体,而是单一态的流体。 二、超临界流体色谱(SFC)的特点 SFC方法的产生及其发展,是由它本身的特点所决定的,具有与GC及LC
超临界流体色谱超临界流体色谱联用
超临界流体色谱-超临界流体色谱联用(SFC-SFC)的接口也有多通阀切换和无阀气控切换两种方式。1990年Lee用两个多通阀联接,由微填充毛细管柱和毛细管柱组成的超临界流体色谱! 超临界流体色谱联用系统(图11-4-28),并用此系统分析了煤焦油中的多环芳烃。1993年Lee又利用无阀气控切
超临界流体色谱法简介
超临界流体色谱法(Supercritical Fluid Chromatography ,SFC)是以超临界流体作为流动相的一种色谱方法·所谓超临界流体,是指既不是气体也不是液体的一些物质,它们的物理性质介于气体和液体之间。 超临界流体色谱技术是20世纪80年代发展起来的一种崭新的色谱技术.由
超临界流体色谱法的定义
超临界流体色谱法(Supercritical Fluid Chromatography ,SFC)是以超临界流体作为流动相的一种色谱方法·所谓超临界流体,是指既不是气体也不是液体的一些物质,它们的物理性质介于气体和液体之间。
超临界流体色谱法的分类
1.根据所用的色谱柱分类 填充柱超临界流体色谱(填充柱) 毛细管超临界流体色谱(毛细管柱) 2.根据色谱过程的用途分类 分析型SFC:主要用于常规的分析 制备型SFC:常用超临界二氧化碳作为流动相。
超临界流体色谱法的特点
SFC因其超临界流体自身的一些特性 ,使得该方法较气相(GC)和液相(LC)有一定的优势: 1. SFC与GC的比较 SFC可以用比GC更低的温度,从而实现对热不稳定化合物进行有效的分离。由于柱温降低,分离选择性改进,可以分离手性化合物。 由于超临界流体的扩散系数比气体小,因此SFC的谱带
关于超临界流体萃取技术超临界流体萃取的特点
1)超临界流体 CO2萃取与化学法萃取相比有以下突出的优点: (1)可以在接近室温(35-40℃)及CO2气体笼罩下进行提取,有效地防止了热敏性物质的氧化和逸散。因此,在萃取物中保持着 药用植物的全部成分,而且能把高沸点,低 挥发度、易 热解的物质在其沸点温度以下萃取出来; (2)使用SFE
超临界流体萃取—超临界多元流体反应精馏介绍
超临界流体反应精馏系把反应与精馏工艺合而为一,其优越性是无庸置疑的,但仍受精馏自由度的约束较难实现产业化,有关的理、工科科技人员特着手研究开发超临界多元流体反应精馏,首选研究课题是用于对大宗的天然脂肪酸、单体香料及松节油等生物资源有机物的高压加氢、臭氧氧化、固体超强酸催化氧化及酶反应等,这一新工
超临界流体概述
一、超临界流体的概念: 临界温度是指使物质由气态变为液态的zui高温度。每种物质都有一个临界温度,在临界温度以上,无论怎样增大压强,气体都不会液化。 临界压强是指在临界温度时,气体能被液化的zui小压强。 超临界流体是指温度和压强均处于临界点以上的流体。二、
超临界流体简介
超临界流体(supercritical fluid)是指温度、压力高于其临界状态的流体,温度与压力都在临界点之上的物质状态。 超临界流体具有许多独特的性质,如粘度、密度、扩散系数、溶剂化能力等性质,对温度和压力变化十分敏感,粘度和扩散系数接近气体,而密度和溶剂化能力接近液体。 纯净物质要根据
超临界流体概述
一、超临界流体的概念:临界温度是指使物质由气态变为液态的最高温度。每种物质都有一个临界温度,在临界温度以上,无论怎样增大压强,气体都不会液化。临界压强是指在临界温度时,气体能被液化的最小压强。超临界流体是指温度和压强均处于临界点以上的流体。二、超临界流体的性质:如果某气体处于超临界状态,无论怎样继增
超临界流体的定义
纯净物质要根据温度和压力的不同,呈现出液体、气体、固体等状态变化。在温度高于某一数值时,任何大的压力均不能使该纯物质由气相转化为液相,此时的温度即被称之为临界温度Tc;而在临界温度下,气体能被液化的最低压力称为临界压力Pc。在临界点附近,会出现流体的密度、粘度、溶解度、热容量、介电常数等所有流体
超临界流体的特点
超临界流体具有液体和气体的双重特性,有与液体接近的密度,又与气体接近的黏度及高的扩散系数,因此具有很强的溶解能力和良好的流动、传递性能。处于临界温度和临界压力附近的超临界流体密度仅仅是温度和压力的函数,所以在合适的温度和压力下,它能够提供足够的密度来保证足够强的溶解性。
超临界流体的性质
它基本上仍是一种气态,但又不同于一般气体,是一种稠密的气态。其密度比一般气体要大两个数量级,与液体相近。它的粘度比液体小,但扩散速度比液体快(约两个数量级),所以有较好的流动性和传递性能。它的介电常数随压力而急剧变化(如介电常数增大有利于溶解一些极性大的物质)。
超临界流体的含义
任何一种物质都存在三种相态----气相、液相、固相。三相呈平衡态共存的点叫三相点。液、气两相呈平衡状态的点叫临界点。在临界点时的温度和压力称为临界温度和临界压力。不同的物质其临界点所要求的压力和温度各不相同。 超临界流体(SCF)是指在临界温度和临界压力以上的流体。高于
超临界流体的性质
所谓超临界流体是指温度和压力均在本身的临界点以上的高密度流体,具有和液体同样的凝聚力、溶解力,然而其扩散系数又接近于气体,是通常液体的近百倍,因此超临界流体萃取具有很高的萃取速度。另外,超临界流体随着温度与压力的连续变化。而对物质的萃取具有选择性,且萃取后易分离。超临界流体的P-V-T性质
超临界流体的定义
超临界流体(supercriticalfluid,简称SCF)可用临界温度和临界压力的形式来定义。气、液两相呈平衡状态的点叫临界点。在临界点时的温度和压力称为临界温度和临界压力。高于临界温度和临界压力而接近临界点的状态称为超临界状态。处于超临界状态时,气、液两相性质非常接近。超临界流体(superc
超临界流体色谱法的应用范围
超临界流体色谱法被广泛应用于天然物,药物,表面活性剂,高聚物,多聚物,农药,炸药和火箭推进剂等物质的分离和分析,
超临界流体色谱法的工作原理
SFC的流动相:超临界流体(CO2、N2O、NH3等) SFC的固定相:固体吸附剂(硅胶)或键合到载体(或毛细管壁)上的高聚物;可使用液相色谱的柱填料。 分离机理:吸附与脱附。组分在两相间的分配系数不同而被分离。 压力效应:SFC的柱压降大(比毛细管色谱大30倍),对分离有影响(柱前端与柱
简介超临界流体色谱法的应用
SFC可弥补GC和HPLC在分析性能上的某些不足,分离效能和分析速度介于两种色谱方法之间。 SFC可分析不宜用GC分析的一些物质,如强极性、强吸附性、热稳定性差、难挥发的化合物; 它可分析相对分子质量比GC大几个数量级的物质。 SFC可分析HPLC难以检测的各种化合物,如无紫外吸收的各种天
超临界流体萃取的临界流体的介绍
超临界流体(Supercritical Fluid,SF)是处于临界温度(Tc)和临界压力(Pc)以上,介于气体和液体之间的流体。超临界流体具有气体和液体的双重特性。SF的密度和液体相近,粘度与气体相近,但扩散系数约比液体大100倍。由于溶解过程包含分子间的相互 作用和扩散作用,因而SF对许多物