拓扑绝缘体内奇异量子效应室温下首现

科技日报北京10月27日电 (记者刘霞)据《自然·材料》杂志10月封面文章,美国科学家在研究一种铋基拓扑材料时,首次在室温下观察到了拓扑绝缘体内的独特量子效应,有望为下一代量子技术,如能效更高的自旋电子技术的发展奠定基础,也将加速更高效且更“绿色”量子材料的研发。 拓扑绝缘体是一种特殊的材料,内部的电子不能自由移动,因此不导电,是绝缘体,但边缘的电子可以自由移动,这意味着这些电子可导电。此外由于拓扑结构,沿边缘流动的电子不会受到缺陷或变形的阻碍,因此这种材料不仅有可能改进现有技术,还能通过探测量子电子特性,加深人们对物质本身的理解。 但迄今科学家们一直很难用这些材料制造功能器件,因为较高的温度会产生“热噪音”。温度升高,原子剧烈振动,从而破坏精细的量子系统,使量子态崩溃。特别是在拓扑绝缘体内,较高温度会造成绝缘体表面的电子侵入绝缘体内部,导致那里的电子开始传导,从而稀释或破坏特殊的量子效应。解决方法是将这些实验置于绝对零......阅读全文

拓扑绝缘体内奇异量子效应室温下首现

科技日报北京10月27日电 (记者刘霞)据《自然·材料》杂志10月封面文章,美国科学家在研究一种铋基拓扑材料时,首次在室温下观察到了拓扑绝缘体内的独特量子效应,有望为下一代量子技术,如能效更高的自旋电子技术的发展奠定基础,也将加速更高效且更“绿色”量子材料的研发。 拓扑绝缘体是一种特殊的材料,内

拓扑绝缘体量子输运性质研究取得进展

电子-电子相互作用、量子干涉和无序对输运性质的影响是凝聚态物理研究的重要主题。量子干涉的一阶效应包括被广泛研究的弱局域化和反弱局域化效应,分别对应于正交对称性和辛对称性的体系。2004年研究人员发现,对于前者,比如无序足够强的弱自旋轨道耦合半导体,电子-电子相互作用和量子干涉效应产生的二阶量子修正可

拓扑绝缘体量子输运性质研究取得进展

  电子-电子相互作用、量子干涉和无序对输运性质的影响是凝聚态物理研究的重要主题。量子干涉的一阶效应包括被广泛研究的弱局域化和反弱局域化效应,分别对应于正交对称性和辛对称性的体系。2004年研究人员发现,对于前者,比如无序足够强的弱自旋轨道耦合半导体,电子-电子相互作用和量子干涉效应产生的二阶量子修

强磁场中心拓扑绝缘体量子线研究取得新进展

  3月28日,国际期刊《自然》子刊《科学报告》(Scientific Reports)发表中科院强磁场科学中心田明亮研究小组的最新科研成果:单晶碲化铋Bi2Te3纳米线中的一维弱反局域化(One-dimensional weak antilocalization in single-cry

Science:磁性拓扑绝缘体畴壁上的量子化手性边缘传导

  对畴壁(DW)构型和运动的控制可以实现磁性和介电材料在微小外部磁场下的非易失响应。东京大学K. Yasuda和Y. Tokura(共同通讯作者)利用磁力显微镜尖端设计并制造出在量子反常霍尔态中的磁畴,通过运输测量证明了沿指定DW手性一维边缘传导现象的存在。研究结果可促进低功耗的自旋电子器件的实现

合肥研究院铋单晶纳米线表面超导研究获进展

  2月10日,国际期刊《纳米快报》(Nano Letters)发表了中国科学院合肥物质科学研究院强磁场科学中心研究员田明亮与美国宾夕法尼亚州立大学合作完成的最新科研成果:《铋单晶纳米线中表面超导电性研究》(Surface Superconductivity in Thin Cylindrical

磁性拓扑绝缘体中的量子化反常霍尔效应研究取得进展

图1:量子霍尔效应(左)与量子化反常霍尔效应(右)的比较示意图  最近,中国科学院物理研究所/北京凝聚态物理国家实验室方忠、戴希研究组在无需外磁场的量子霍尔效应研究中取得重要进展。本工作发表在《科学》杂志上【R.Yu,et.al., Science, 3June2010

陈绝缘体内或存在拓扑激子

激子(e)及其空穴(h)相互环绕(艺术图)。图片来源:俄克拉荷马大学科技日报北京8月28日电(记者刘霞)美国俄克拉荷马大学凝聚态物理学家发表论文称,陈绝缘体内或许存在一种新型激子——拓扑激子,这些激子有望催生新型量子器件。相关论文发表于最新一期《美国国家科学院院刊》。当电子吸收光并跃迁到更高能级或能

陈绝缘体内或存在拓扑激子

  美国俄克拉荷马大学凝聚态物理学家发表论文称,陈绝缘体内或许存在一种新型激子——拓扑激子,这些激子有望催生新型量子器件。相关论文发表于最新一期《美国国家科学院院刊》。  当电子吸收光并跃迁到更高能级或能带时,受激电子会在其先前的能带中留下一个“电子空穴”。由于电子带负电荷而空穴带正电荷,两者会通过

自然界中存在天然形成的拓扑绝缘体

  据《自然》网站3月8日报道,最近,德国马克斯·普朗克研究院固体研究所科学家发现,自然界中也存在天然形成的拓扑绝缘体,而且比人工合成的更纯净。这一发现对建造自旋电子设备具有促进作用,并有助于设计开发用电子自旋来编码信息的量子计算机。研究结果发表在最近出版的《纳米快报》上。   拓扑绝缘体是一种奇

美国科学家创建出一种新的更稳定的大能隙拓扑绝缘体

  美国犹他大学的研究人员创建出一种新的,其可作为硅半导体顶部金属层的特殊材料,将使超高速计算机在室温下执行快速运算成为可能。该项研究成果刊登在近日美国《国家科学院学报》上。  这种新的拓扑绝缘体,其里面犹如绝缘体,而其外部可导电,为量子计算机和快速自旋电子元件铺平了道路。  量子计算机是一种遵循量

新发现:拓扑晶体的绝缘体态

  拓扑晶体绝缘体(TCI)是一类受晶体对称性保护的非平庸拓扑态。在保持时间反演对称性的体系中,理论上已预言了三种类型的TCI,分别受到镜面、滑移面和旋转对称性保护。角分辨光电子能谱(ARPES)实验已证实了镜面对称性保护TCI材料SnTe,并在KHgSb中观测到滑移面保护TCI态的部分实验证据。2

首次在磁性拓扑绝缘体中观测到清晰的拓扑表面态

  近十几年来,拓扑绝缘体已经成为凝聚态物理领域的一个重要研究方向。对于Z2拓扑绝缘体,其拓扑性质受到时间反演对称性的保护。如果将Z2拓扑绝缘体的时间反演对称性破坏,会形成一类新的拓扑态,即磁性拓扑绝缘体。磁性拓扑绝缘体可以表现出一系列新奇的物理性质,例如量子反常霍尔效应、手性马约拉纳费米子、轴子绝

二维拓扑绝缘体研究获进展

  理论研究表明,具有蜂窝状晶格结构的薄膜是二维拓扑绝缘体的重要平台,也是实现量子自旋霍尔效应的理想材料。该体系独特的晶格结构使其在布里渊区的K点处产生狄拉克锥型能带结构,如石墨烯。由于碳元素的自旋轨道耦合强度低,石墨烯难以在狄拉克点处打开能隙,从而实现量子自旋霍尔效应。相比之下,碲元素因强自旋轨道

科学家实现新型声学拓扑绝缘体

  近日,中国科学院声学研究所噪声与振动重点实验室副研究员贾晗与华中科技大学物理学院副教授祝雪丰等合作的研究“反常弗洛奎型声学拓扑绝缘体的实验论证”在《自然—通讯》上在线发表。  拓扑绝缘体是一类不同于金属和绝缘体的全新物态,其内部为绝缘体但表面却能导电,且该表面导电性源自材料的内禀性质,不受杂质和

拓扑绝缘体的实验研究获系列进展

  中国科学院物理研究所/北京凝聚态物理国家实验室(筹)表面物理国家重点实验室马旭村研究员领导的研究组与清华大学物理系薛其坤教授领导的研究组合作,在三维拓扑绝缘体薄膜的外延生长、电子结构及有限尺寸效应方面进行研究,取得一系列进展。     拓扑绝缘体是最近几年发现的一种新的物质形态。

物理所预言一种新类型的拓扑绝缘体和量子自旋霍尔效应

  日前,中国科学院物理研究所/北京凝聚态物理国家实验室(筹)孙庆丰和谢心澄研究员在铁磁石墨烯体系中预言了一种新类型的拓扑绝缘体和量子自旋霍尔效应【PRL,104,066805(2010)】。  近几年来,一种全新的量子物质态――拓扑绝缘体已蓬勃兴起。与传统的绝缘体比较,拓扑绝缘体有

拓扑量子计算的各种平台及最新进展

  2021年9月22日,拓扑量子计算进展研讨会在北京举行。这次研讨会由中国科学院大学卡弗里理论科学研究所组织,由卡弗里所与中国科学院物理研究所共同举办。拓扑量子计算是利用拓扑材料中具有非阿贝尔统计的准粒子构筑量子比特、执行量子计算的研究方案。由于材料的拓扑稳定性,拓扑量子计算有望解决量子比特退相干

首个光学拓扑绝缘体研制成功

  据物理学家组织网近日报道,以色列和德国科学家携手合作,成功研制出首个光学拓扑绝缘体,这种新设备通过一种独特的“波导”网格,为光的传输护航,可减少传输过程中的散射。科学家们表示,最新研究对光学工业的发展大有裨益。研究发表在最新一期的《自然》杂志上。   随着计算机的运行速度不断加快以及芯片变得越

金属铋纳米带二维金属表面态研究获进展

  近期,中国科学院强磁场科学中心田明亮研究员课题组在金属铋纳米带研究中取得了新进展。研究人员在超薄的单晶铋纳米带中观察到具有典型二维特征的Shubnikov-de Haas(SdH)量子振荡行为,同时低磁场各向异性磁电阻结果确认了薄样品中的量子输运行为来源于二维表面态。实验结果首次清晰地给出了Bi

单元素二维拓扑绝缘体锗烯面世

原文地址:http://news.sciencenet.cn/htmlnews/2023/5/500858.shtm荷兰科学家研制出了首个由单元素组成的二维(2D)拓扑绝缘体锗烯,其仅由锗原子组成,还具有在“开”和“关”状态之间切换的独特能力,这一点类似晶体管,有望催生更节能的电子产品。相关研究刊发

科学家实现声二阶拓扑绝缘体

  日前,南京大学教授卢明辉、陈延峰团队与苏州大学教授蒋建华团队合作,在声子晶体中发现二阶拓扑相和多维拓扑相变,相关研究成果近日在线发表于《自然-物理》。  研究人员在空气声系统中首次观测到不同空间维度的拓扑相变,并利用多维度的拓扑相和拓扑相变实现了二阶拓扑绝缘体,揭示了高阶拓扑相形成的新机制。  

物理所搭建拓扑量子磁体

拓扑物态具有受保护的拓扑边界模式,对局域扰动展现出鲁棒性,是凝聚态物理和量子信息科学领域的前沿热点课题之一。人工量子系统凭借其结构的可定制性和参数的可调性,已成为研究拓扑物态的重要实验平台。然而,迄今为止,基于人工量子系统的拓扑物态研究集中在无相互作用的系统,而对具有相互作用的多体拓扑物态的量子模拟

首次发现新奇拓扑量子态

   最新发现与创新   从中国科学院合肥物质科学研究院获悉,该院稳态强磁场中心的郝宁宁研究员课题组,在拓扑新物态研究中取得最新进展,他们发现硫化铁化合物中存在一种交错二聚型反铁磁序,并且这种反铁磁序会调制体系进入一种新的拓扑物态:拓扑晶体反铁磁相。相关研究成果日前相继发表在欧洲物理学会《新物理学杂

物理所搭建拓扑量子磁体

拓扑物态具有受保护的拓扑边界模式,对局域扰动展现出鲁棒性,是凝聚态物理和量子信息科学领域的前沿热点课题之一。人工量子系统凭借其结构的可定制性和参数的可调性,已成为研究拓扑物态的重要实验平台。然而,迄今为止,基于人工量子系统的拓扑物态研究集中在无相互作用的系统,而对具有相互作用的多体拓扑物态的量子模拟

压电效应和拓扑量子相变

   近期,美国宾夕法尼亚州立大学刘朝星教授课题组从理论上提出压电响应的突变可以表征一系列二维拓扑相变,从而第1次揭示了压电系数和拓扑相变间的关系。相关成果以“Piezoelectricity and Topological Quantum Phase Transitions in Two-Dime

拓扑晶态绝缘体碲化锡纳米线研究获得新进展

  拓扑绝缘体(Topological Insulator)是一种新奇的物质状态,它的体相是绝缘态而表面却是零带隙的金属态。尤其它的表面是受拓扑保护的导电态,不受非磁性杂质和晶体缺陷的干扰,因而在无损耗的量子计算和新奇的自旋电子器件等领域具有重要的应用价值。时间反演对称性保护的三维拓扑绝缘体如B

科学家利用超导量子芯片模拟多种陈绝缘体

原文地址:http://news.sciencenet.cn/htmlnews/2023/9/508097.shtm量子霍尔效应是凝聚态物理学中的基本现象,人们发展了拓扑能带理论来研究此类拓扑物态,发现量子霍尔系统的能带结构是和系统的边界态密切相关的,即存在体相与边缘的对应,并利用陈数来区分不同的拓

半导体所HgTe半导体量子点研究取得新进展

  近年来,拓扑绝缘体材料以其独特的物性吸引了科学界广泛的研究关注。这类材料内部是绝缘体,而在边界或/和表面则显示出金属的特性。这种独特的性质无法按照传统的材料分类方法来区分。其能带结构由Z2拓扑不变量来刻画。目前人们注意力集中在拓扑绝缘体块材的制备和输运性质研究方面。相对而言,拓扑绝缘体纳米结构的

新技术使用激光探索拓扑绝缘体中的电子行为

    美国能源部国家加速器实验室和斯坦福大学的研究人员开发了新的方法,以探测拓扑绝缘体中的强场物理学:使用中红外激光穿过三维拓扑绝缘体(Bi2Se3)来激发高次谐波产生(HHG),并分析被转换至更高能量和频率的出射光。所得谐波呈现随激光场椭圆率增加而单调下降的特征,表面贡献表现出高度非平凡的依赖性