吸附色谱的基本原理
1.物理吸附又称表面吸附,是因构成溶液的分子(含溶质及溶剂)与吸附剂表面分子的分子间力的相互作用所引起的。a) 基本规律:“相似者易于吸附”,固液吸附时,吸附剂、溶质、溶剂三者统称为吸附过程的三要素。b) 基本特点:无选择性、可逆吸附、快速。c) 基本原理:吸附与解吸附的往复循环。d) 三要素:吸附剂、溶质(被分离物)、溶剂。色谱柱物理吸附过程:吸附——解吸附——再吸附——再解析——直至分离2.化学吸附a) 基本特点:有选择性、不可逆吸附。b) 基本原理:产生化学反应。酸性物质与Al2O3发生化学反应;碱性物质与硅胶发生化学反应;Al2O3容易发生结构的异构化,应尽量避免。3.半化学吸附1)基本特点:介于物理吸附和化学吸附之间。2)基本原理:以氢键的形式产生吸附。如聚酰胺对黄酮类、醌类等化合物之间的氢键吸附,力量较弱,介于前两者之间,也有一定的应用。......阅读全文
吸附色谱的基本原理
1.物理吸附又称表面吸附,是因构成溶液的分子(含溶质及溶剂)与吸附剂表面分子的分子间力的相互作用所引起的。a) 基本规律:“相似者易于吸附”,固液吸附时,吸附剂、溶质、溶剂三者统称为吸附过程的三要素。b) 基本特点:无选择性、可逆吸附、快速。c) 基本原理:吸附与解吸附的往复循环。d) 三要素:吸附
吸附色谱的基本原理
吸附色谱利用固定相吸附中西对物质分子吸附能力的差异实现对混合物的分离,吸附色谱的色谱过程是流动相分子与物质分子竞争固定相吸附中心的过程。基本原理物理吸附又称表面吸附,是因构成溶液的分子(含溶质及溶剂)与吸附剂表面分子的分子间里的相互作用所引起的。基本特点:无选择性、可逆吸附、快速。基本规律:“相似者
吸附色谱的基本原理
固体内部的分子所受的分子间作用力是对称的,而固体表面的分子所受的力是不对称的。向内的一面受内部分子的作用力较大,而向外的一面所受的作用力较小,因而当气体分子或溶液中溶质分子在运动过程中碰到固体表面时就会被吸引而停留在固体表面上。吸附剂与被吸附物分子之间的相互作用是由可逆的范德华力所引起的,故在一定的
吸附柱色谱的基本原理
吸附色谱的原理:在一定条件下,硅胶与被分离物质之间产生作用,这种作用主要是物理和化学作用两种.物理作用来自于硅胶表表面与溶质分子之间的范德华力.化学作用主要是硅胶表面的硅羟基与待分离物质之间的氢键作用。色谱管为内径均匀、下端缩口的硬质玻璃管,下端用棉花或玻璃纤维塞住,管内装入吸附剂。吸附剂的颗粒应尽
吸附色谱的基本原理简介
吸附色谱利用固定相吸附中心对物质分子吸附能力的差异实现对混合物的分离,吸附色谱的色谱过程是流动相分子与物质分子竞争固定相吸附中心的过程 吸附色谱的分配系数表达式如下: K_a =\frac{[X_a]}{[X_m]} 其中[Xa]表示被吸附于固定相活性中心的组分分子含量,[Xm]表示游离于
关于吸附色谱的基本原理介绍
固体内部的分子所受的分子间作用力是对称的,而固体表面的分子所受的力是不对称的。向内的一面受内部分子的作用力较大,而向外的一面所受的作用力较小,因而当气体分子或溶液中溶质分子在运动过程中碰到固体表面时就会被吸引而停留在固体表面上。吸附剂与被吸附物分子之间的相互作用是由可逆的范德华力所引起的,故在一
薄层色谱之吸附色谱的基本原理、流动相要求
薄层色谱,与其他色谱技术的原理一样,是一种利用样品中各组成成分的不同物理特性把它们分离开来的技术。这些物理特性包括分子的大小、形状、所带电荷、挥发性、溶解性及吸附性等。薄层色谱分离一般是由几种分离机理综合的结果,最多的是吸附和分配,也有离子交换或凝胶渗透。鉴于在薄层色谱的过程中,固定相和流动相的特性
吸附的基本原理
当液体或气体混合物与吸附剂长时间充分接触后,系统达到平衡,吸附质的平衡吸附量(单位质量吸附剂在达到吸附平衡时所吸附的吸附质量),首先取决于吸附剂的化学组成和物理结构,同时与系统的温度和压力以及该组分和其他组分的浓度或分压有关。对于只含一种吸附质的混合物,在一定温度下吸附质的平衡吸附量与其浓度或分压间
吸附色谱的吸附剂介绍
吸附剂的一般要求:较大的表面积与一定的吸附能力。不与展开剂起化学变化,不与待分离的物质产生反应或催化、分解或缔合,颗粒均匀。1.极性吸附剂硅胶,氧化铝均为极性吸附剂,特点为:a) 对极性物质具有较强的亲和能力,极性强的溶质将被优先吸附。b) 溶剂极性较弱,则吸附剂对溶质将表现出较强的吸附能力。溶剂极
吸附层析的基本原理介绍
固体内部的分子所受的分子间作用力是对称的,而固体表面的分子所受的力是不对称的。向内的一面受内部分子的作用力较大,而向外的一面所受的作用力较小,因而当气体分子或溶液中溶质分子在运动过程中碰到固体表面时就会被吸引而停留在固体表面上。吸附剂与被吸附物分子之间的相互作用是由可逆的范德华力所引起的,故在一
吸附色谱的原理
吸附色谱的原理吸附色谱法溶解于一相中的混合物的单一组分在另一相界面上会呈现出浓度变化,另一相表面常常出现组分的浓缩,这种现象称之为吸附。吸附性薄层色谱法是将吸附剂在光洁的表面,如玻璃、金属或塑料等表面上均匀地铺成薄层,而后在上面点上样品,以流动相展开,这样,组分不断地被吸附剂吸附,又被流动相溶解,解
吸附色谱的试剂
吸附剂 吸附剂的吸附力强弱,是由能否有效地接受或供给电子,或提供和接受活泼氢来决定。被吸附物的化学结构如与吸附剂有相似的电子特性,吸附就更牢固。常用吸附剂的吸附力的强弱顺序为:活性炭>氧化铝>硅胶>氧化镁>碳酸钙>磷酸钙>石膏>纤维素>淀粉和糖。以活性炭的吸附力最强。吸附剂在使用前须先用加热脱
吸附色谱仪分析的吸附系数
吸附色谱仪是利用样品各组分在固定相和流动相中吸附-解吸作用的差异,使各组分在作相对运动的两相中反复多次受到吸附-解吸作用而达到相互分离。当流动相通过固定相吸附剂时,吸附剂表面的活性中心会吸附流动相分子(Y)。同时,当溶质分子(X)被流动相带入色谱柱时,只要在固定相上有一定程度的保留,就会取代数目相当
吸附分离的基本原理介绍
当液体或气体混合物与吸附剂长时间充分接触后,系统达到平衡,吸附质的平衡吸附量(单位质量吸附剂在达到吸附平衡时所吸附的吸附质量),首先取决于吸附剂的化学组成和物理结构,同时与系统的温度和压力以及该组分和其他组分的浓度或分压有关。对于只含一种吸附质的混合物,在一定温度下吸附质的平衡吸附量与其浓度或分
吸附色谱法的吸附能力的介绍
吸附剂吸附试样的能力,主要取决于吸附剂的比表面积和理化性质,试样的组成和结构以及洗脱液的性质等。组分与吸附剂的性质相似时,易被吸附,呈现高的保留值;当组分分子结构与吸附剂表面活性中心的刚性几何结构相适应时,易于吸附。从而使吸附色谱成为分离几何异构体的有效手段。不同的官能团具有不同的吸附能力,因此
液固吸附色谱仪吸附剂的吸附能力
液固吸附色谱仪吸附剂有极性吸附剂和非极性吸附剂。极性吸附剂表面是极性的,选择性吸附极性大的化合物。非极性吸附剂的吸附力主要是色散力。一、吸附能力的定量指标-活度:1、活度:反映吸附剂的活性与含水量的关系,使吸附剂的活性标准化。2、方法:样品:六种标准染料(0.04%w/v)10mL(石油醚溶解)。
吸附色谱的方法原理
固体内部的分子所受的分子间作用力是对称的,而固体表面的分子所受的力是不对称的。向内的一面受内部分子的作用力较大,而向外的一面所受的作用力较小,因而当气体分子或溶液中溶质分子在运动过程中碰到固体表面时就会被吸引而停留在固体表面上。吸附剂与被吸附物分子之间的相互作用是由可逆的范德华力所引起的,故在一定的
吸附色谱的技术原理
吸附色谱利用固定相吸附中心对物质分子吸附能力的差异实现对混合物的分离,吸附色谱的色谱过程是流动相分子与物质分子竞争固定相吸附中心的过程吸附色谱的分配系数表达式如下:K_a =\frac{[X_a]}{[X_m]}其中[Xa]表示被吸附于固定相活性中心的组分分子含量,[Xm]表示游离于流动相中的组分分
关于吸附色谱的简介
吸附色谱,文献中也称之为液固色谱或正相色谱。吸附一词可能更准确地反映这类分离过程的本质,并与液相色谱的其他技术相区别。吸附色谱是吸附色谱系色谱法的一种,利用固定相吸附中对物质分子吸附能力的差异实现对混合物的分离,吸附色谱的色谱过程是流动相分子与物质分子竞争固定相吸附中心的过程。
吸附色谱的基本简介
吸附色谱 又称“液一固相色谱”。流动相是液体,固定相是化学性质不太活泼、表面积大的吸附剂(如活性碳、硅胶等)。当多成分的溶液渗过装有细粉多孔吸附剂的柱体时,由于吸附剂对各成分的吸附力不同,产生选择吸附。以适当淋洗液淋洗时,各成分在各层吸附剂与淋洗液之间不断重复吸附与解吸过程,使各成分逐步分离。分段收
简述吸附色谱的应用
吸附色谱在生物技术领域有比较广泛的应用,主要体现在对生物小分子物质的分离。生物小分子物质相对分子质量小,结构和性质比较稳定,操作条件要求不太苛刻,其中生物碱、萜类、苷类、色素等次生代谢小分子物质常采用吸附色谱或反相色谱进行分离。吸附色谱在天然药物的分离制备中也占有很大的比例。
简述吸附色谱的应用
吸附色谱在生物技术领域有比较广泛的应用,主要体现在对生物小分子物质的分离。生物小分子物质相对分子质量小,结构和性质比较稳定,操作条件要求不太苛刻,其中生物碱、萜类、苷类、色素等次生代谢小分子物质常采用吸附色谱或反相色谱进行分离。吸附色谱在天然药物的分离制备中也占有很大的比例。
酶联免疫吸附试验的基本原理
ELISA方法的基本原理是酶分子与抗体或抗抗体分子共价结合,此种结合不会改变抗体的免疫学特性,也不影响酶的生物学活性。此种酶标记抗体可与吸附在固相载体上的抗原或抗体发生特异性结合。滴加底物溶液后,底物可在酶作用下使其所含的供氢体由无色的还原型变成有色的氧化型,出现颜色反应。因此,可通过底物的颜色反应
吸附色谱法
吸附色谱法 adsorption chromatography 利用吸附性能不同实现各组分分离和分析的色谱方法。在色谱法中,以各种固体吸附剂为固定相,以气体或液体为流动相,样品混合物通过填于柱内或铺成薄层的固定相时,由于各组分与固定相之间吸附-脱附能力强弱的不同,其滞留程度就不同,也即各组分被流动相
吸附色谱法
吸附色谱法是指利用吸附性的不同而进行的色谱分离和分析的方法,它是基于在溶质和用作固定固体吸附剂上的固定活性位点之间的相互作用来达到提取和分离的目的的。
吸附色谱仪
吸附色谱 adsorption chromatography 吸附色谱系色谱法之一种,利用固定相吸附中对物质分子吸附能力的差异实现对混合物的分离,吸附色谱的色谱过程是流动相分子与物质分子竞争固定相吸附中心的过程。 吸附按物质状态可分为:固液吸附与固气吸附,但一般指固液吸附;按吸附手段可分为:
吸附色谱法
吸附色谱法常叫做液-固色谱法(Liquid-Solid Chromatography,简称LSC),它是基于在溶质和用作固定固体吸附剂上的固定活性位点之间的相互作用。可以将吸附剂装填于柱中、覆盖于板上、或浸渍于多孔滤纸中。吸附剂是具有大表面积的活性多孔固体,例如硅胶、氧化铝和活性炭等。活性点位例如硅
什么是吸附色谱
吸附色谱一般文献中也称为液固色谱或正相色谱,固定相是吸附剂,流动相是以非极性烃类为主的溶剂。对于溶质的分离取决于溶质与流动相分子在吸附剂表面上的吸附竞争,由于不同溶质的吸附强度不同而彼此分离。吸附色谱是最经典的色谱分离过程,几乎所有有关色谱的书籍里都会介绍。
吸附色谱法
吸附色谱法:利用吸附剂表面对不同组分物理吸附性能的差别而使之分离的色谱法称为吸附色谱法。适于分离不同种类的化合物(例如,分离醇类与芳香烃)。
酶联免疫吸附试验基本原理
ELISA方法的基本原理是酶分子与抗体或抗抗体分子共价结合,此种结合不会改变抗体的免疫学特性,也不影响酶的生物学活性。此种酶标记抗体可与吸附在固相载体上的抗原或抗体发生特异性结合。滴加底物溶液后,底物可在酶作用下使其所含的供氢体由无色的还原型变成有色的氧化型,出现颜色反应。因此,可通过底物的颜色反应