色氨酸操纵子的阻遏作用介绍

trp操纵子转录起始的调控是通过阻遏蛋白实现的。产生阻遏蛋白的基因是trpR,该基因距trp operon基因簇很远。它结合于trp 操纵基因特异序列,阻止转录起始。但阻遏蛋白的DNA结合活性受Trp调控,Trp起着一个效应分子的作用,Trp与之结合的动力学常数为1~2 ×10 -5mol·L-1。在有高浓度Trp存在时,阻遏蛋白 -色氨酸复合物形成一个同源二聚体,并且与色氨酸操纵子紧密结合,因此可以阻止转录。阻遏蛋白-色氨酸复合物与基因特异位点结合的能力很强,动力学常数为2 ×10 -10mol·L-1,因此细胞内阻遏蛋白数量仅有20~30分子已可充分发挥作用。当Trp 水平低时,阻遏蛋白以一种非活性形式存在,不能结合DNA。在这样的条件下,trp操纵子被RNA聚合酶转录,同时Trp 生物合成途径被激活。......阅读全文

色氨酸操纵子的阻遏作用介绍

  trp操纵子转录起始的调控是通过阻遏蛋白实现的。产生阻遏蛋白的基因是trpR,该基因距trp operon基因簇很远。它结合于trp 操纵基因特异序列,阻止转录起始。但阻遏蛋白的DNA结合活性受Trp调控,Trp起着一个效应分子的作用,Trp与之结合的动力学常数为1~2 ×10 -5mol·L-

色氨酸操纵子的阻遏作用

Trp合成途径较漫长,消耗大量能量和前体物,如丝氨酸、PRPP、谷氨酰氨等,是细胞内最昂贵的代谢途径之一,因此受到严格调控,其中色氨酸操纵子发挥着关键作用。调控作用主要有三种方式:阻遏作用、弱化作用以及终产物Trp 对合成酶的反馈抑制作用。trp操纵子转录起始的调控是通过阻遏蛋白实现的。产生阻遏蛋白

关于色氨酸操纵子的弱化作用介绍

  trp操纵子转录终止的调控是通过弱化作用(attenuation)实现的。在大肠杆菌trp operon,前导区的碱基序列包括4个分别以1、2、3和4表示的片段,能以两种不同的方式进行碱基配对,1  -2和3 -4配对,或2  -3配对,3  -4配对区正好位于终止密码子的识别区。前导序列有相邻

色氨酸操纵子的定义和作用

色氨酸操纵子(Trp operon)是一种重要的操纵子,是联合使用或转录的一组基因,也是用来编码生成色氨酸的元件之一。色氨酸操纵子是在许多细菌存在,但首次在大肠杆菌中得到表征。当在环境中存在足量的色氨酸,它将不被使用。这是一个重要的学习基因调控的实验系统,并常用来教授基因调控的知识。

色氨酸操纵子的弱化作用

trp操纵子转录终止的调控是通过弱化作用(attenuation)实现的。在大肠杆菌trp operon,前导区的碱基序列包括4个分别以1、2、3和4表示的片段,能以两种不同的方式进行碱基配对,1 - 2和3 -4配对,或2 - 3配对,3 - 4配对区正好位于终止密码子的识别区。前导序列有相邻的两

色氨酸操纵子的功能介绍

色氨酸操纵子(Trp operon)是一种重要的操纵子,是联合使用或转录的一组基因,也是用来编码生成色氨酸的元件之一。色氨酸操纵子是在许多细菌存在,但首次在大肠杆菌中得到表征。当在环境中存在足量的色氨酸,它将不被使用。这是一个重要的学习基因调控的实验系统,并常用来教授基因调控的知识。

关于色氨酸操纵子的介绍

  色氨酸操纵子负责调控色氨酸的生物合成,它的激活与否完全根据培养基中有无色氨酸而定。当培养基中有足够的色氨酸时,该操纵子自动关闭;缺乏色氨酸时,操纵子被打开。色氨酸在这里不是起诱导作用而是阻遏,因而被称作辅阻遏分子,意指能帮助阻遏蛋白发生作用。色氨酸操纵子恰和乳糖操纵子相反。

色氨酸操纵子的调控作用途径

Trp合成途径较漫长,消耗大量能量和前体物,如丝氨酸、PRPP、谷氨酰氨等,是细胞内最昂贵的代谢途径之一,因此受到严格调控,其中色氨酸操纵子发挥着关键作用。调控作用主要有三种方式:阻遏作用、弱化作用以及终产物Trp 对合成酶的反馈抑制作用。阻遏作用trp操纵子转录起始的调控是通过阻遏蛋白实现的。产生

色氨酸操纵子的调控作用途径

Trp合成途径较漫长,消耗大量能量和前体物,如丝氨酸、PRPP、谷氨酰氨等,是细胞内最昂贵的代谢途径之一,因此受到严格调控,其中色氨酸操纵子发挥着关键作用。调控作用主要有三种方式:阻遏作用、弱化作用以及终产物Trp 对合成酶的反馈抑制作用。阻遏作用trp操纵子转录起始的调控是通过阻遏蛋白实现的。产生

关于色氨酸操纵子的反馈抑制作用介绍

  由于基因表达必然消耗一定的能源和前体物,相对于阻遏和弱化作用,反馈抑制作用更为经济和高效。终产物Trp对催化分支途径几步反应的酶具有反馈抑制作用,其50%抑制浓度分别为:邻氨基苯甲酸合酶,0. 0015 mmol·L  -1 ;邻氨基苯甲酸磷酸核糖转移酶,0.15 mmol·L-1;色氨酸合成酶

色氨酸操纵子的反馈抑制作用

由于基因表达必然消耗一定的能源和前体物,相对于阻遏和弱化作用,反馈抑制作用更为经济和高效。终产物Trp对催化分支途径几步反应的酶具有反馈抑制作用,其50%抑制浓度分别为:邻氨基苯甲酸合酶,0. 0015 mmol·L - 1 ;邻氨基苯甲酸磷酸核糖转移酶,0.15 mmol·L-1;色氨酸合成酶,7

概述色氨酸操纵子的调控作用途径

  Trp合成途径较漫长,消耗大量能量和前体物,如丝氨酸、PRPP、谷氨酰氨等,是细胞内最昂贵的代谢途径之一,因此受到严格调控,其中色氨酸操纵子发挥着关键作用。调控作用主要有三种方式:阻遏作用、弱化作用以及终产物Trp 对合成酶的反馈抑制作用。

色氨酸操纵子的操纵子遗传改造

由于色氨酸操纵子的调控作用,自然界不可能存在高产Trp菌株,为了获得高产Trp菌株,就必须对色氨酸操纵子进行改造,解除其调节作用。早期的研究策略主要依靠传统诱变方法,经过长期努力,获得了一些有价值的研究结果,如获得了TrpR - 菌株,通过缺失某些片断解除了弱化作用,得到了一些抗反馈抑制的酶。许多T

色氨酸操纵子的应用特点

色氨酸操纵子(Trp operon)是一种重要的操纵子,是联合使用或转录的一组基因,也是用来编码生成色氨酸的元件之一。色氨酸操纵子是在许多细菌存在,但首次在大肠杆菌中得到表征。当在环境中存在足量的色氨酸,它将不被使用。这是一个重要的学习基因调控的实验系统,并常用来教授基因调控的知识。

色氨酸操纵子的基本结构

大肠杆菌色氨酸操纵子结构较简单,也是研究得最清楚的操纵子之一,结构基因依次排列为trpEDCBA,其中trpGD 和trpCF基因融合。trpE和trpG编码邻氨基苯甲酸合酶,trpD编码邻氨基苯甲酸磷酸核糖转移酶,trpC编码吲哚甘油磷酸合酶,trpF编码异构酶,trpA和trpB分别编码色氨酸合

关于色氨酸操纵子的简介

  色氨酸操纵子(Trp operon)是一种重要的操纵子,是联合使用或转录的一组基因,也是用来编码生成色氨酸的元件之一。色氨酸操纵子是在许多细菌存在,但首次在大肠杆菌中得到表征。当在环境中存在足量的色氨酸,它将不被使用。这是一个重要的学习基因调控的实验系统,并常用来教授基因调控的知识。

色氨酸操纵子的基本结构

大肠杆菌色氨酸操纵子结构较简单,也是研究得最清楚的操纵子之一,结构基因依次排列为trpEDCBA,其中trpGD 和trpCF基因融合。trpE和trpG编码邻氨基苯甲酸合酶,trpD编码邻氨基苯甲酸磷酸核糖转移酶,trpC编码吲哚甘油磷酸合酶,trpF编码异构酶,trpA和trpB分别编码色氨酸合

色氨酸操纵子的基本结构

大肠杆菌色氨酸操纵子结构较简单,也是研究得最清楚的操纵子之一,结构基因依次排列为trpEDCBA,其中trpGD 和trpCF基因融合。trpE和trpG编码邻氨基苯甲酸合酶,trpD编码邻氨基苯甲酸磷酸核糖转移酶,trpC编码吲哚甘油磷酸合酶,trpF编码异构酶,trpA和trpB分别编码色氨酸合

关于色氨酸操纵子的代谢工程理论介绍

  1991年,Bailey用代谢工程描述利用DNA重组技术对细胞的酶反应、物质运输以及调控功能的遗传操作,进而改良细胞生物活性的过程,标志着代谢工程向一门系统学科发展的转折点。代谢工程亦称途径工程,以区别于传统的单基因表达(第一代基因工程)和基因定向突变(第二代基因工程),是有目的地对细胞生化反应

概述色氨酸操纵子的遗传改造

  由于色氨酸操纵子的调控作用,自然界不可能存在高产Trp菌株,为了获得高产Trp菌株,就必须对色氨酸操纵子进行改造,解除其调节作用。早期的研究策略主要依靠传统诱变方法,经过长期努力,获得了一些有价值的研究结果,如获得了TrpR  -菌株,通过缺失某些片断解除了弱化作用,得到了一些抗反馈抑制的酶。许

简述色氨酸操纵子的基本结构

  大肠杆菌色氨酸操纵子结构较简单,也是研究得最清楚的操纵子之一,结构基因依次排列为trpEDCBA,其中trpGD 和trpCF基因融合。trpE和trpG编码邻氨基苯甲酸合酶,trpD编码邻氨基苯甲酸磷酸核糖转移酶,trpC编码吲哚甘油磷酸合酶,trpF编码异构酶,trpA和trpB分别编码色氨

阻遏作用的概念

阻遏作用是指基因的表达在信使RNA合成(转录)阶段为特异的调节因子(阻遏物)所抑制,使细胞内特定的酶或酶系合成率降低的现象。

基因调控的实用意义

   细菌通过基因调控可以避免合成过量的氨基酸、核苷酸等物质。人们要利用细菌来生产这些物质,就必须使它们丧失有关的基因调控作用。在一般的野生型细菌中,阻遏蛋白和氨基酸等代谢最终产物结合后便作用于操纵基因而使转录停止。有两类突变型可以使细菌处于消阻遏状态而合成过量的氨基酸等物质。一类是操纵基因突变型,

基因调控的实用意义

细菌通过基因调控可以避免合成过量的氨基酸、核苷酸等物质。人们要利用细菌来生产这些物质,就必须使它们丧失有关的基因调控作用。在一般的野生型细菌中,阻遏蛋白和氨基酸等代谢最终产物结合后便作用于操纵基因而使转录停止。有两类突变型可以使细菌处于消阻遏状态而合成过量的氨基酸等物质。一类是操纵基因突变型,由于操

以乳糖操纵子为例原核生物基因表达调控的原理

原核生物的基因表达调控原核生物的基因表达调控虽然比真核生物简单,然而也存在着复杂的调控系统,如在转录调控种就存在着许多问题:如何在复杂的基因组内确定正确的转录起始点?如何将DNA的核苷酸按着遗传密码的程序转录到新生的RNA链中?如何保证合成一条完整的RNA链?如何确定转录的终止?上述问题决定于DNA

关于色氨酸的生理作用介绍

  植物  色氨酸是植物体内生长素生物合成重要的前体物质,其结构与IAA相似,在高等植物中普遍存在。可以通过色氨酸合成生长素,有两条途径:  (1)色氨酸首先氧化脱氨形成吲哚丙酮,再脱羧形成吲哚乙醛;吲哚乙醛在相应酶的催化下最终氧化为吲哚乙酸。  (2)色氨酸先脱羧形成色胺,然后再由色胺氧化脱氨形成

原核生物基因表达调控模式及其分子机制

原核生物基因的表达调控最重要的特点是操纵子模式,从调控水平来看主要在转录水平,即对RNA合成的调控,翻译水平次之。通常有两种方式:①起始调控,即启动子调控;②终止调控,即衰减子调控。原核基因组的调控机制:通过负调控和正调控因子所进行的复合调控,阻遏蛋白与操纵基因结合,妨碍RNApol与P结合形成开放

原核表达载体的重要调控元件(启动子、SD序列与终止子)

1.启动子 启动子是DNA链上一段能与RNA聚合酶结合并起始RNA合成的序列,它是基因表达不可缺少的重要调控序列。没有启动子,基因就不能转录。由于细菌RNA聚合酶不能识别真核基因的启动子,因此原核表达载体所用的启动子必须是原核启动子。 原核启动子是由两段彼此分开且又高度保守的核苷酸序列组成,

色氨酸的生理作用

植物色氨酸生成生长素的路线色氨酸是植物体内生长素生物合成重要的前体物质,其结构与IAA相似,在高等植物中普遍存在。可以通过色氨酸合成生长素,有两条途径:(1)色氨酸首先氧化脱氨形成吲哚丙酮,再脱羧形成吲哚乙醛;吲哚乙醛在相应酶的催化下最终氧化为吲哚乙酸。(2)色氨酸先脱羧形成色胺,然后再由色胺氧化脱

色氨酸的生理作用

植物色氨酸是植物体内生长素生物合成重要的前体物质,其结构与IAA相似,在高等植物中普遍存在。可以通过色氨酸合成生长素,有两条途径:(1)色氨酸首先氧化脱氨形成吲哚丙酮,再脱羧形成吲哚乙醛;吲哚乙醛在相应酶的催化下最终氧化为吲哚乙酸。(2)色氨酸先脱羧形成色胺,然后再由色胺氧化脱氨形成吲哚乙酸。动物色