色氨酸操纵子的定义和作用

色氨酸操纵子(Trp operon)是一种重要的操纵子,是联合使用或转录的一组基因,也是用来编码生成色氨酸的元件之一。色氨酸操纵子是在许多细菌存在,但首次在大肠杆菌中得到表征。当在环境中存在足量的色氨酸,它将不被使用。这是一个重要的学习基因调控的实验系统,并常用来教授基因调控的知识。......阅读全文

色氨酸操纵子的定义和作用

色氨酸操纵子(Trp operon)是一种重要的操纵子,是联合使用或转录的一组基因,也是用来编码生成色氨酸的元件之一。色氨酸操纵子是在许多细菌存在,但首次在大肠杆菌中得到表征。当在环境中存在足量的色氨酸,它将不被使用。这是一个重要的学习基因调控的实验系统,并常用来教授基因调控的知识。

色氨酸操纵子的阻遏作用

Trp合成途径较漫长,消耗大量能量和前体物,如丝氨酸、PRPP、谷氨酰氨等,是细胞内最昂贵的代谢途径之一,因此受到严格调控,其中色氨酸操纵子发挥着关键作用。调控作用主要有三种方式:阻遏作用、弱化作用以及终产物Trp 对合成酶的反馈抑制作用。trp操纵子转录起始的调控是通过阻遏蛋白实现的。产生阻遏蛋白

色氨酸操纵子的弱化作用

trp操纵子转录终止的调控是通过弱化作用(attenuation)实现的。在大肠杆菌trp operon,前导区的碱基序列包括4个分别以1、2、3和4表示的片段,能以两种不同的方式进行碱基配对,1 - 2和3 -4配对,或2 - 3配对,3 - 4配对区正好位于终止密码子的识别区。前导序列有相邻的两

色氨酸操纵子的阻遏作用介绍

  trp操纵子转录起始的调控是通过阻遏蛋白实现的。产生阻遏蛋白的基因是trpR,该基因距trp operon基因簇很远。它结合于trp 操纵基因特异序列,阻止转录起始。但阻遏蛋白的DNA结合活性受Trp调控,Trp起着一个效应分子的作用,Trp与之结合的动力学常数为1~2 ×10 -5mol·L-

色氨酸操纵子的调控作用途径

Trp合成途径较漫长,消耗大量能量和前体物,如丝氨酸、PRPP、谷氨酰氨等,是细胞内最昂贵的代谢途径之一,因此受到严格调控,其中色氨酸操纵子发挥着关键作用。调控作用主要有三种方式:阻遏作用、弱化作用以及终产物Trp 对合成酶的反馈抑制作用。阻遏作用trp操纵子转录起始的调控是通过阻遏蛋白实现的。产生

色氨酸操纵子的调控作用途径

Trp合成途径较漫长,消耗大量能量和前体物,如丝氨酸、PRPP、谷氨酰氨等,是细胞内最昂贵的代谢途径之一,因此受到严格调控,其中色氨酸操纵子发挥着关键作用。调控作用主要有三种方式:阻遏作用、弱化作用以及终产物Trp 对合成酶的反馈抑制作用。阻遏作用trp操纵子转录起始的调控是通过阻遏蛋白实现的。产生

概述色氨酸操纵子的调控作用途径

  Trp合成途径较漫长,消耗大量能量和前体物,如丝氨酸、PRPP、谷氨酰氨等,是细胞内最昂贵的代谢途径之一,因此受到严格调控,其中色氨酸操纵子发挥着关键作用。调控作用主要有三种方式:阻遏作用、弱化作用以及终产物Trp 对合成酶的反馈抑制作用。

关于色氨酸操纵子的弱化作用介绍

  trp操纵子转录终止的调控是通过弱化作用(attenuation)实现的。在大肠杆菌trp operon,前导区的碱基序列包括4个分别以1、2、3和4表示的片段,能以两种不同的方式进行碱基配对,1  -2和3 -4配对,或2  -3配对,3  -4配对区正好位于终止密码子的识别区。前导序列有相邻

色氨酸操纵子的反馈抑制作用

由于基因表达必然消耗一定的能源和前体物,相对于阻遏和弱化作用,反馈抑制作用更为经济和高效。终产物Trp对催化分支途径几步反应的酶具有反馈抑制作用,其50%抑制浓度分别为:邻氨基苯甲酸合酶,0. 0015 mmol·L - 1 ;邻氨基苯甲酸磷酸核糖转移酶,0.15 mmol·L-1;色氨酸合成酶,7

色氨酸操纵子的操纵子遗传改造

由于色氨酸操纵子的调控作用,自然界不可能存在高产Trp菌株,为了获得高产Trp菌株,就必须对色氨酸操纵子进行改造,解除其调节作用。早期的研究策略主要依靠传统诱变方法,经过长期努力,获得了一些有价值的研究结果,如获得了TrpR - 菌株,通过缺失某些片断解除了弱化作用,得到了一些抗反馈抑制的酶。许多T

色氨酸操纵子的应用特点

色氨酸操纵子(Trp operon)是一种重要的操纵子,是联合使用或转录的一组基因,也是用来编码生成色氨酸的元件之一。色氨酸操纵子是在许多细菌存在,但首次在大肠杆菌中得到表征。当在环境中存在足量的色氨酸,它将不被使用。这是一个重要的学习基因调控的实验系统,并常用来教授基因调控的知识。

色氨酸操纵子的基本结构

大肠杆菌色氨酸操纵子结构较简单,也是研究得最清楚的操纵子之一,结构基因依次排列为trpEDCBA,其中trpGD 和trpCF基因融合。trpE和trpG编码邻氨基苯甲酸合酶,trpD编码邻氨基苯甲酸磷酸核糖转移酶,trpC编码吲哚甘油磷酸合酶,trpF编码异构酶,trpA和trpB分别编码色氨酸合

色氨酸操纵子的基本结构

大肠杆菌色氨酸操纵子结构较简单,也是研究得最清楚的操纵子之一,结构基因依次排列为trpEDCBA,其中trpGD 和trpCF基因融合。trpE和trpG编码邻氨基苯甲酸合酶,trpD编码邻氨基苯甲酸磷酸核糖转移酶,trpC编码吲哚甘油磷酸合酶,trpF编码异构酶,trpA和trpB分别编码色氨酸合

关于色氨酸操纵子的简介

  色氨酸操纵子(Trp operon)是一种重要的操纵子,是联合使用或转录的一组基因,也是用来编码生成色氨酸的元件之一。色氨酸操纵子是在许多细菌存在,但首次在大肠杆菌中得到表征。当在环境中存在足量的色氨酸,它将不被使用。这是一个重要的学习基因调控的实验系统,并常用来教授基因调控的知识。

色氨酸操纵子的基本结构

大肠杆菌色氨酸操纵子结构较简单,也是研究得最清楚的操纵子之一,结构基因依次排列为trpEDCBA,其中trpGD 和trpCF基因融合。trpE和trpG编码邻氨基苯甲酸合酶,trpD编码邻氨基苯甲酸磷酸核糖转移酶,trpC编码吲哚甘油磷酸合酶,trpF编码异构酶,trpA和trpB分别编码色氨酸合

关于色氨酸操纵子的介绍

  色氨酸操纵子负责调控色氨酸的生物合成,它的激活与否完全根据培养基中有无色氨酸而定。当培养基中有足够的色氨酸时,该操纵子自动关闭;缺乏色氨酸时,操纵子被打开。色氨酸在这里不是起诱导作用而是阻遏,因而被称作辅阻遏分子,意指能帮助阻遏蛋白发生作用。色氨酸操纵子恰和乳糖操纵子相反。

色氨酸操纵子的功能介绍

色氨酸操纵子(Trp operon)是一种重要的操纵子,是联合使用或转录的一组基因,也是用来编码生成色氨酸的元件之一。色氨酸操纵子是在许多细菌存在,但首次在大肠杆菌中得到表征。当在环境中存在足量的色氨酸,它将不被使用。这是一个重要的学习基因调控的实验系统,并常用来教授基因调控的知识。

关于色氨酸操纵子的反馈抑制作用介绍

  由于基因表达必然消耗一定的能源和前体物,相对于阻遏和弱化作用,反馈抑制作用更为经济和高效。终产物Trp对催化分支途径几步反应的酶具有反馈抑制作用,其50%抑制浓度分别为:邻氨基苯甲酸合酶,0. 0015 mmol·L  -1 ;邻氨基苯甲酸磷酸核糖转移酶,0.15 mmol·L-1;色氨酸合成酶

概述色氨酸操纵子的遗传改造

  由于色氨酸操纵子的调控作用,自然界不可能存在高产Trp菌株,为了获得高产Trp菌株,就必须对色氨酸操纵子进行改造,解除其调节作用。早期的研究策略主要依靠传统诱变方法,经过长期努力,获得了一些有价值的研究结果,如获得了TrpR  -菌株,通过缺失某些片断解除了弱化作用,得到了一些抗反馈抑制的酶。许

简述色氨酸操纵子的基本结构

  大肠杆菌色氨酸操纵子结构较简单,也是研究得最清楚的操纵子之一,结构基因依次排列为trpEDCBA,其中trpGD 和trpCF基因融合。trpE和trpG编码邻氨基苯甲酸合酶,trpD编码邻氨基苯甲酸磷酸核糖转移酶,trpC编码吲哚甘油磷酸合酶,trpF编码异构酶,trpA和trpB分别编码色氨

​色氨酸的简介和作用

色氨酸(Tryptophan)又称β-吲哚基丙氨酸,化学式C11H12N2O2,是人体的必须氨基酸之一。外观为白色或微黄色结晶或结晶性粉末,无臭,味微苦。水中微溶,在乙醇中极微溶解,在氯仿中不溶,在甲酸中易溶,在氢氧化钠试液或稀盐酸中溶解。色氨酸是植物体内生长素生物合成重要的前体物质,其结构与IAA

超操纵子的定义

中文名称超操纵子英文名称superoperon定  义多个操纵子联合调控功能不相关基因的表达体系。应用学科生物化学与分子生物学(一级学科),基因表达与调控(二级学科)

关于色氨酸操纵子的代谢工程理论介绍

  1991年,Bailey用代谢工程描述利用DNA重组技术对细胞的酶反应、物质运输以及调控功能的遗传操作,进而改良细胞生物活性的过程,标志着代谢工程向一门系统学科发展的转折点。代谢工程亦称途径工程,以区别于传统的单基因表达(第一代基因工程)和基因定向突变(第二代基因工程),是有目的地对细胞生化反应

乳糖操纵子的定义

乳糖操纵子是参与乳糖分解的一个基因群,由乳糖系统的阻遏物和操纵序列组成,使得一组与乳糖代谢相关的基因受到同步的调控。

组氨酸操纵子的定义

组氨酸操纵子是控制与His降解代谢有关的两组酶类合成的操纵子。

色氨酸的生理作用

植物色氨酸生成生长素的路线色氨酸是植物体内生长素生物合成重要的前体物质,其结构与IAA相似,在高等植物中普遍存在。可以通过色氨酸合成生长素,有两条途径:(1)色氨酸首先氧化脱氨形成吲哚丙酮,再脱羧形成吲哚乙醛;吲哚乙醛在相应酶的催化下最终氧化为吲哚乙酸。(2)色氨酸先脱羧形成色胺,然后再由色胺氧化脱

色氨酸的生理作用

植物色氨酸是植物体内生长素生物合成重要的前体物质,其结构与IAA相似,在高等植物中普遍存在。可以通过色氨酸合成生长素,有两条途径:(1)色氨酸首先氧化脱氨形成吲哚丙酮,再脱羧形成吲哚乙醛;吲哚乙醛在相应酶的催化下最终氧化为吲哚乙酸。(2)色氨酸先脱羧形成色胺,然后再由色胺氧化脱氨形成吲哚乙酸。动物色

色氨酸的生理作用

植物色氨酸生成生长素的路线色氨酸是植物体内生长素生物合成重要的前体物质,其结构与IAA相似,在高等植物中普遍存在。可以通过色氨酸合成生长素,有两条途径:(1)色氨酸首先氧化脱氨形成吲哚丙酮,再脱羧形成吲哚乙醛;吲哚乙醛在相应酶的催化下最终氧化为吲哚乙酸。(2)色氨酸先脱羧形成色胺,然后再由色胺氧化脱

色氨酸检查作用

  丝氨酸能增加大脑皮层中的神经传递质乙酰胆碱的产量,乙酰胆碱与思维、推理和注意力集中有关联。一项临床研究发现,在针对健康人施加压力的实验中,服用磷脂酰丝氨酸的人群对于压力的反应要比其他人群低。磷脂酰丝氨酸主要用于治疗痴呆症(包括阿兹海默症和非阿兹海默症的痴呆)和正常的老年记忆损失。

半乳糖操纵子的定义

半乳糖也是E.coli的一种碳源,它的分解要涉及三种酶的催化:半乳糖激酶(galactokinase,K),半乳糖转移酶(galactose transferase,T)和半乳糖表面异构酶(galactose epimerase ,E,)。