原位杂交的技术原理和意义
原位杂交:在研究DNA分子复制原理的基础上发展起来的一种技术。其基本原理是两条核苷酸单链片段,在适宜的条件下,能过氢键结合,形成DNA-DNA、DNA-RNA或 RNA-RNA 双键分子的特点,应用带有标记的(有放射性同位素,如3H、35S、32P、荧光素生物素、地高辛等非放射性物质)DNA或RNA片段作为核酸探针,与组织切片或细胞内待测核酸(RNA或DNA)片段进行杂交,然后可用放射自显影等方法予以显示,在光镜或电镜下观察目的 mRNA或DNA 的存在并定位;用原位杂交技术,可在原位研究细胞合成某种多肽或蛋白质的基因表达。此方法有很高的敏感性和特异性,可进一步从分子水平来探讨细胞的功能表达及其调节机制。已成为当今细胞生物学、分子生物学研究的重要手段。......阅读全文
原位杂交的技术原理和意义
原位杂交:在研究DNA分子复制原理的基础上发展起来的一种技术。其基本原理是两条核苷酸单链片段,在适宜的条件下,能过氢键结合,形成DNA-DNA、DNA-RNA或 RNA-RNA 双键分子的特点,应用带有标记的(有放射性同位素,如3H、35S、32P、荧光素生物素、地高辛等非放射性物质)DNA或RNA
-荧光原位杂交的原理和意义
荧光原位杂交(Fluorescence in situ hybridization,FISH)是20世纪80年代末在放射性原位杂交技术基础上发展起来的一种非放射性分子生物学和细胞遗传学结合的新技术,是以荧光标记取代同位素标记而形成的一种新的原位杂交方法。
原位杂交技术原理和应用
原理: 荧光,又作“萤光”,是指一种光致发光的冷发光现象。当某种常温物质经某种波长的入射光(通常是紫外线或X射线)照射,吸收光能后进入激发态,并且立即退激发并发出比入射光的的波长长的出射光(通常波长在可见光波段);而且一旦停止入射光,发光现象也随之立即消失。具有这种性质的出射光就被称之为荧光。
原位杂交技术的原理和特点
原位杂交(in situ hybridization)将标记的核酸探针与细胞或组织中的核酸进行杂交,称为原位杂交。使用DNA或者RNA探针来检测与其互补的另一条链在细菌或其他真核细胞中的位置。RNA原位核酸杂交又称RNA原位杂交组织化学或RNA原位杂交。该技术是指运用cRNA或寡核苷酸等探针检测细胞
荧光原位杂交技术原理和应用特点
荧光原位杂交(fluorescence in situ hybridization,FISH)是在20世纪80年代末在放射性原位杂交技术的基础上发展起来的一种非放射性分子细胞遗传技术,以荧光标记取代同位素标记而形成的一种新的原位杂交方法,探针首先与某种介导分子(reporter molecule)结
原位杂交技术原理
荧光,又作“萤光”,是指一种光致发光的冷发光现象。当某种常温物质经某种波长的入射光(通常是紫外线或X射线)照射,吸收光能后进入激发态,并且立即退激发并发出比入射光的的波长长的出射光(通常波长在可见光波段);而且一旦停止入射光,发光现象也随之立即消失。具有这种性质的出射光就被称之为荧光。 在日常
荧光原位杂交技术的技术原理
荧光原位杂交技术技术原理是将荧光素直接或间接标记的核酸探针[或生物素、地高辛、dinit rophenyl(I)NP)、aminoacetylAAFfluorine(AAF)等标记的核酸探针与待测样本中的核酸序列按照碱基互补配对的原则进行杂交,经洗涤后直接在荧光显微镜下观察。 荧光原位杂交技术是一种
-荧光原位杂交的技术原理
荧光原位杂交技术技术原理是将荧光素直接或间接标记的核酸探针[或生物素、地高辛、dinit rophenyl(I)NP)、aminoacetylAAFfluorine(AAF)等标记的核酸探针与待测样本中的核酸序列按照碱基互补配对的原则进行杂交,经洗涤后直接在荧光显微镜下观察。 荧光原位杂交技术是一种
荧光原位杂交技术的原理
生命科学的发展,生物技术的进步使我们对疾病本质的认识不断地深入,也使我们拥有更多新的治疗方法和药物应对疾病的威胁。如何准确有效地利用这些新的治疗方法和药物治愈疾病是我们迫切需要研究的内容。如何对疾病进行正确的分型和诊断却是上述工作的基础。只有全面地把握病情,并在此基础上进行准确的判断和分析,才能为病
荧光原位杂交的技术原理
荧光原位杂交技术技术原理是将荧光素直接或间接标记的核酸探针[或生物素、地高辛、dinit rophenyl(I)NP)、aminoacetylAAFfluorine(AAF)等标记的核酸探针与待测样本中的核酸序列按照碱基互补配对的原则进行杂交,经洗涤后直接在荧光显微镜下观察。 荧光原位杂交技术是一种
荧光原位杂交的技术原理
荧光原位杂交技术技术原理是将荧光素直接或间接标记的核酸探针[或生物素、地高辛、dinit rophenyl(I)NP)、aminoacetylAAFfluorine(AAF)等标记的核酸探针与待测样本中的核酸序列按照碱基互补配对的原则进行杂交,经洗涤后直接在荧光显微镜下观察。荧光原位杂交技术是一种重
荧光原位杂交的技术原理
荧光原位杂交技术技术原理是将荧光素直接或间接标记的核酸探针[或生物素、地高辛、dinit rophenyl(I)NP)、aminoacetylAAFfluorine(AAF)等标记的核酸探针与待测样本中的核酸序列按照碱基互补配对的原则进行杂交,经洗涤后直接在荧光显微镜下观察。 荧光原位杂交技术是一种
荧光原位杂交的技术原理
荧光原位杂交技术技术原理是将荧光素直接或间接标记的核酸探针[或生物素、地高辛、dinit rophenyl(I)NP)、aminoacetylAAFfluorine(AAF)等标记的核酸探针与待测样本中的核酸序列按照碱基互补配对的原则进行杂交,经洗涤后直接在荧光显微镜下观察。荧光原位杂交技术是一种重
荧光原位杂交的技术原理
荧光原位杂交技术技术原理是将荧光素直接或间接标记的核酸探针[或生物素、地高辛、dinit rophenyl(I)NP)、aminoacetylAAFfluorine(AAF)等标记的核酸探针与待测样本中的核酸序列按照碱基互补配对的原则进行杂交,经洗涤后直接在荧光显微镜下观察。荧光原位杂交技术是一种重
简述荧光原位杂交的技术原理
荧光原位杂交技术技术原理是将荧光素直接或间接标记的核酸探针[或生物素、地高辛、dinit rophenyl(I)NP)、aminoacetylAAFfluorine(AAF)等标记的核酸探针与待测样本中的核酸序列按照碱基互补配对的原则进行杂交,经洗涤后直接在荧光显微镜下观察。 [2] 荧光原位
免疫分析技术原理和意义
1.基本原理 常用于农药残留分析的免疫分析的技术有放射免疫分析(radioimmunoassay,RA)和酶免疫分析(enzyme immunoassay,EA)两种。RIA创立于20世纪60年代,EIA是继RIA之后,于20世纪70年代发展起来的一项新的免疫学技术。RIA与EIA技术一样
原位杂交仪原位杂交的意义
原位杂交:在研究DNA分子复制原理的基础上发展起来的一种技术。其基本原理是两条核苷酸单链片段,在适宜的条件下,能过氢键结合,形成DNA-DNA、DNA-RNA或 RNA-RNA 双键分子的特点,应用带有标记的(有放射性同位素,如3H、35S、32P、荧光素生物素、地高辛等非放射性物质)DNA或R
原位杂交技术的基本原理
原位杂交:在研究DNA分子复制原理的基础上发展起来的一种技术。其基本原理是两条核苷酸单链片段,在适宜的条件下,能过氢键结合,形成DNA-DNA、DNA-RNA或 RNA-RNA 双键分子的特点,应用带有标记的(有放射性同位素,如3H、35S、32P、荧光素生物素、地高辛等非放射性物质)DNA或RNA
菌落原位杂交技术的方法和步骤
对分散在若干个琼脂平板上的少数菌落(100-200)进行克隆筛选时,可采用本方法。将这些菌落归并到一个琼脂主平板以及已置于第二个琼脂平板表面的一张硝酸纤维素滤膜上。经培养一段时间后,对菌落进行原位裂解。主平板应贮存于4℃直至得到筛选结果。1、材料:待检测的细菌平皿,已标记好的探针,硝酸纤维素滤膜等。
多彩色荧光原位杂交技术的原理与应用
mFISH是在荧光原位杂交基础上发展起来的新技术,它不仅具有FISH的优点,而且克服了FISH的许多局限,其最大特点是可将多次繁顼的FISH实验和多种不同的基因定位在一次FISH实验中完成。mFISH能同时检测多个基因,分辨复杂的染色体易位和微小缺失,区分间期细胞多倍体和超二倍体等。mFISH用激发
DNA纤维荧光原位杂交技术的原理与应用
FISH的分辨率取决于载体DNA的浓缩程度,如何提高分辨率一直是一个重要课题。Wiegant等和Heng等首先利用化学方法对染色体进行线性化,再以此为载体进行FISH,使其分辨率显著提高,这就是最初的纤维-FISH。纤维-FISH应用各种不同技术,将待研究细胞的全部遗传物质即DNA在载玻片上制备出D
荧光原位杂交技术的定义、原理、背景及优势
荧光原位杂交方法是一种物理图谱绘制方法,使用荧光素标记探针,以检测探针和分裂中期的染色体或分裂间期的染色质的杂交。荧光原位杂交技术是一种重要的非放射性原位杂交技术。 它的基本原理是:如果被检测的染色体或DNA纤维切片上的靶DNA与所用的核酸探针是同源互补的,二者经变性-退火-复性,即可形成靶D
原位杂交技术和操作步骤详细介绍
原位杂交技术应用于染色体、细胞和组织切片等样品中进行核酸特异性检测,与免疫组化技术的结合应用,能将DNA、mRNA和蛋白水平上的基因活性与样品的显微拓扑信息结合起来。1969年Pardue和Gall将放射性标记的探针直接应用于纯化核酸的杂交,此后得益于分子克隆技术的发展,及不同探针标记系统和检测系统
原位杂交技术和操作步骤详细介绍
原位杂交技术应用于染色体、细胞和组织切片等样品中进行核酸特异性检测,与免疫组化技术的结合应用,能将DNA、mRNA和蛋白水平上的基因活性与样品的显微拓扑信息结合起来。1969年Pardue和Gall将放射性标记的探针直接应用于纯化核酸的杂交,此后得益于分子克隆技术的发展,及不同探针标记系统和检测系统
双重和多重原位杂交(hybridization-in-situ)技术
为了在同一标本上或同一细胞内同时检测是否存在两种或两种以上的靶核酸序列。可应用双重或多重原位杂交技术.即以两种或多种标记探针与靶核酸杂交。然后利用不同的检测手段分别显示各种靶核酸的存在和分布。该技术与免疫组织化学技术中的双重或多重标记相似,除了探针本身的特异性外,对结果的干扰主要来自标记物及检测试剂
原位杂交技术
导语我们常说,科学家也是艺术家,在明确真理探索科学的道路上,往往会创造出很多极具美感的艺术作品。所以今天小编为大家介绍的就是能做出美美图的新技能。先欣赏一下美美的实验结果图~---Olson, B. D. and Downes, G. B. ---in situ Hybridization of w
荧光原位杂交的原理
荧光原位杂交(Fluorescence in situ hybridization,FISH)是20世纪80年代末在放射性原位杂交技术基础上发展起来的一种非放射性分子生物学和细胞遗传学结合的新技术,是以荧光标记取代同位素标记而形成的一种新的原位杂交方法。
DNA纤维荧光原位杂交技术技术的特点、分类和应用
FISH的分辨率取决于载体DNA的浓缩程度,如何提高分辨率一直是一个重要课题。Wiegant等和Heng等首先利用化学方法对染色体进行线性化,再以此为载体进行FISH,使其分辨率显著提高,这就是最初的纤维-FISH。纤维-FISH应用各种不同技术,将待研究细胞的全部遗传物质即DNA在载玻片上制备出D
简述原位杂交的重要意义
原位杂交:在研究DNA分子复制原理的基础上发展起来的一种技术。其基本原理是两条核苷酸单链片段,在适宜的条件下,能过氢键结合,形成DNA-DNA、DNA-RNA或 RNA-RNA 双键分子的特点,应用带有标记的(有放射性同位素,如3H、35S、32P、荧光素生物素、地高辛等非放射性物质)DNA或R
原位杂交的技术应用
①细胞特异性mRNA转录的定位,可用于基因图谱,基因表达和基因组进化的研究;②感染组织中病毒DNA/RNA的检测和定位,如EB病毒mRNA、人类乳头状瘤病毒和巨细胞病毒DNA的检测;③癌基因、抑癌基因及各种功能基因在转录水平的表达及其变化的检测;④基因在染色体上的定位;⑤检测染色体的变化,如染色体数