背景选择的概念
中文名称背景选择英文名称background selection定 义负选择的一种形式。不仅清除有害突变,而且同时清除与其连锁的位点。应用学科遗传学(一级学科),进化遗传学(二级学科)......阅读全文
基因测序产生背景
史蒂夫·乔布斯曾接受过全基因测序基因测序,本是一种实验室研究技术手段,因“名人效应”应用于高端体检、产前诊断等领域,价格不菲。基因测序最广为人知的,是影星安吉丽娜·朱莉通过基因检测,选择手术切除乳腺以降低患乳腺癌风险。2011年去世的苹果公司创始人史蒂夫·乔布斯患癌时,也曾接受过全基因测序。基因测序
液体活检背景介绍
近年来,肿瘤诊疗技术已取得很大进步,但是癌症依然是导致人类死亡的主要因素。癌症转移是造成癌症患者死亡的重要因素,同时转移过程相对复杂,增加了癌症诊疗的困难。因此,对于癌症,做到早期诊断、实时监测和准确预后是非常关键的。目前,传统的组织活检方式存在很多问题,如:成本高、取样难、创伤大等,且难以做到“早
红外热像仪研究背景
由来:1800年英国物理学家F. W.赫胥尔发现了红外线,红外线是一种电磁波,它在电磁波连续频谱中的位置是处于无线电波与可见光之间的区域。红外线辐射是自然界存在的一种最为广泛的电磁波辐射,它是基于任何物体在常规环境下都会产生自身的分子和原子无规则的运动,并不停地辐射出热红外能量,分子和原子的运动
宇宙微波背景辐射
宇宙微波背景辐射1965年,美国贝尔电话实验室的彭齐亚斯(Arno Penzias,1933-)(左一)和威尔逊(R.W.Wilson)(左二)无意中发现了大爆炸理论预言的宇宙微波背景辐射。他们本想要使用一根大型通信天线进行射电天文学的实验研究,但因不断受到一个连续不断本底噪声的干扰,使得实
基因测序产生背景
史蒂夫·乔布斯曾接受过全基因测序 基因测序,本是一种实验室研究技术手段,因“名人效应”应用于高端体检、产前诊断等领域,价格不菲。基因测序最广为人知的,是影星安吉丽娜·朱莉通过基因检测,选择手术切除乳腺以降低患乳腺癌风险。2011年去世的苹果公司创始人史蒂夫·乔布斯患癌时,也曾接受过全基因测序。
污泥脱水机的背景
污泥是污水处理厂以及污水站污水处理后的必然产物,未经过很好处理处置的污泥进入环境后,将会直接给水体和大气带来二次污染,对生态环境和人类的活动也将构成了严重的威胁。因此,污泥在处理上是非常慎重的,污泥在处理上可分为污泥脱水工艺与污泥干化工艺两种,以下主要介绍不同类型的污泥脱水机的各自优势。
磁光效应的背景及简介
磁光效应是指处于磁化状态的物质与光之间发生相互作用而引起的各种光学现象。包括法拉第效应、克尔磁光效应、塞曼效应和科顿-穆顿效应等。这些效应均起源于物质的磁化,反映了光与物质磁性间的联系。光与磁场中的物质,或光与具有自发磁化强度的物质之间相互作用所产生的各种现象,主要包括法拉第效应、科顿-穆顿效应、克
压延机的技术背景
国内粘结铁氧体磁体生产厂家都采用轴瓦结构的压延机,轴瓦材料一般为铜或尼龙,采用黄油润滑。轴瓦易磨损,造成轧辊转动过程中产生径向跳动,很难保证产品尺寸公差。因此,压延机一定要选用精度高的双列向心滚子轴承,并采用稀油润滑,减小轴承磨损,确保磁板沿长度方向厚度公差。 由于颗粒料流动性较差,尤其是沿幅
电泳仪的研发背景
1937年,瑞典生化学家Tiselius集前人百余年探索电泳现象之大成,发明了Tiselius电泳仪,在此基础上建立了研究蛋白质的自由界面电泳方法,利用该法首次证明人血清是由白蛋白(A)、α、β、γ球蛋白组成,并因此于1948年获得阿果奖。随后电泳技术的发展突飞猛进,1949年,Ricketls
胆囊收缩素的背景介绍
1978年研究发现,CCK能存在于中枢神经系统,且含量大于小肠内含量,存在于皮层额叶、皮层梨状区、尾核、海马、丘脑、下丘脑、小脑和间脑。CCK在血中很快降解,其半衰期约3分钟。(即说明需要不断的分泌)具多种生物作用,主要为刺激胰酶分泌与合成,增强胰碳酸氢盐分泌和胃排空,刺激胆囊收缩与奥狄氏括约肌
岩藻多糖的背景介绍
我国是海藻生产和消费大国,藻类资源丰富,尤以褐藻资源十分重要。褐藻是附着生活的海洋低等植物,其中又以海带最为常见。我国的海带养殖面积达4.1万km2,养殖年产量达84万t以上,两者均居世界首位,已形成一个包括良种繁育、养殖、食品加工、藻类化工和生物制品开发的海藻产业,年产值近70亿元。褐藻类海藻
电泳仪的研发背景
1937年,瑞典生化学家Tiselius集前人百余年探索电泳现象之大成,发明了Tiselius电泳仪,在此基础上建立了研究蛋白质的自由界面电泳方法,利用该法首次证明人血清是由白蛋白(A)、α、β、γ球蛋白组成,并因此于1948年获得阿果奖。随后电泳技术的发展突飞猛进,1949年,Ric
软X射线的发展背景
软X射线投影光刻技术是现有可见-近紫外投影光刻技术向软X射线波段(1~30nm)的延伸。但是,由于此波段任何材料的折射率均接近于1,而且吸收较大,微缩投影光学系统必须采用反射系统,而单层膜反射镜对正入射软X 射线的反射率几乎为零,无法利用其组成正入射系统。70年代后,随着超光滑表面加工技术和超薄
生物活性材料的背景历史
上个世纪60年代,惨烈的越南战场,由于美军在战争中因受伤及热带雨林的恶劣环境造成士兵皮肤溃烂、骨骼受损而无法得到快速有效的治疗,为此美国政府开始着手研制一种既能对皮肤软组织受伤有效又能对骨组织受损修复的新型药物,政府每年拨专项巨款用于开发研制,大批科研人员投入研发行列,可是直到越战结束,这种新型药物
微流控的技术背景
要了解微流控技术,首先要知道MEMS技术。MEMS,Mirco-Electro-Mechanical System,微机电系统,也叫微电子机械系统、微系统、微机械等,理念源自于将现实生活在广泛运用的大型设备,通过各种微型技术(半导体技术为主)进行微缩化,但功能不变甚至更加优良。主要由传感器、动作控制
菌落计数仪的发展背景
在常规的微生物实验中,不管是食品卫生细菌学检测,还是药品微生物限度检查,还是研究活性物质的抑菌性能实验,都常常需要对样品中的微生物进行定量或者浓度计算。在中国微生物定量方法中最常用的就是对培养后的皮氏培养皿上所生长菌落的总数进行统计定量方法。 菌落总数统计定量方法也是大多数国家标准中进行为
简述肿瘤疫苗的研发背景
癌症的传统治疗手段如:手术治疗、放射治疗和药物治疗等,均具有一定的局限性。由于靶向性较差,放射治疗和药物治疗易损伤正常细胞,产生不良反应。恶性肿瘤具有易侵袭和易复发的生物学特征,因此需要靶向性更好、毒性更小的治疗方案 [4] 。随着肿瘤基因组学的发展,生物免疫疗法成为肿瘤治疗的第四种手段。有研究
钠离子电池产生的背景
(1)锂钠同族,物化性质类似(2)锂资源稀缺,钠资源丰富锂资源的全球储量有限,锂元素在地壳中的含量仅为 0.0065%。随着新能源汽车的发 展对电池的需求大幅上升,资源端的瓶颈逐渐显现,成本较高限制了锂离子电池的大规模应用。钠资源储量非常丰富,地壳丰度为 2.64%,是锂资源的 440 倍,且钠资
纳米复合材料的背景
复合材料由于其优良的综合性能,特别是其性能的可设计性被广泛应用于航空航天、国防、交通、体育等领域,纳米复合材料则是其中最具吸引力的部分,如今发展很快,世界发达国家新材料发展的战略都把纳米复合材料的发展放到重要的位置。该研究方向主要包括纳米聚合物基复合材料、纳米碳管功能复合材料、纳米钨铜复合材料。在纳
基因芯片的背景介绍
高通量、全基因组的DNA芯片已经成为生物领域十分有用的工具。然而,芯片实验产生的数据量日益增长,由于不同的分析方法,会得出不同结论,因而分析起着关键作用。 基因芯片分析就是为了通过生物信息学方法从这些芯片数据中发现可能对生物效应起作用的关键基因,从中寻找特定模式并对每个基因给予注释,从而挖掘出
塞曼效应校正背景的原理
当光源处于一定强度的磁场内时,光源发射出单一波长的谱线分裂为π,α±三种不同波长的谱线,π和α±偏振方向互相垂直π(可用P表示)保持原来波长,和磁场方向平行,α±(可用P⊥表示)为离开原波长0.1A以上的两条谱线,和磁场方向垂直。由于基态原子只吸收波长差在0.1A以下的共振线,而背景吸收波长范围从1
超导体的背景简介
超导体的发现与低温研究密不可分。在18世纪,由于低温技术的限制,人们认为存在不能被液化的“永久气体”,如氢气、氦气等。1898年,英国物理学家杜瓦制得液氢。1908年,荷兰莱顿大学莱顿低温实验室的卡末林·昂内斯教授成功将最后一种“永久气体”——氦气液化,并通过降低液氦蒸汽压的方法,获得1.15~
背景吸收的光散射简介
在原子化过程中,当基体浓度大时,由于热量不足,基体物质不能全部蒸发,一部分以固体微粒状态存在,这些固体微粒,在光路中对光源辐射光产生散射,被散射的光偏离光路,形成假吸收,使到达检测器的光强度减小其结果等价于一个分子吸收叠加在分析元素的原子吸收信号上。散射对吸收线位于短波区的元素的测定影响较大,当基体
塞曼效应校正背景的特点
塞曼效应校正背景可在全波段进行,可校正吸光度高达1.5~2.0A的背景,而氘灯只能校正吸光度小于1A的背景,塞曼效应背景校正的准确度较高。采用恒定磁场调制方式,测定灵敏度比常规原子吸收法有所降低,可变磁场调制方式的测定灵敏度已接近常规原子吸收法。塞曼效应能在共振线同一波长处校正背景它不仅对连续背景具
荧光原位杂交的背景
对于利用rRNA的荧光原位杂交来说,如下原因可导致较低的荧光信号强度: 较低的细胞核糖体含量 较低的细胞周边的通透性 较低的目标序列可接触性(由于rRNA的折叠产生的构象,有些位置与rRNA分子内其他链或其他rRNA或蛋白紧密接触,从而使探针无法和目标序列杂交) 为检验细胞中的目标序列是
关于血栓形成的背景介绍
静脉血栓症有两种:一是血栓性静脉炎,它是指炎症为首发而血栓形成是继发的。另一个是静脉血栓形成,它是指血栓形成为首发现象,静脉壁的炎症过程是继发的。但以下肢深静脉血栓形成最常见。老年人不仅发病率高,而且易产生致命性肺栓塞,值得重视。
关于细胞衰老的背景介绍
细胞是生物体结构和功能的基本单位,也是生物体衰老基本单位。细胞衰老在形态学上表现为细胞结构的退行性变,如在细胞核,核膜凹陷,最终导致核膜崩解,染色质结构变化,超二倍体和异常多倍体的细胞数目增加;细胞膜脆性增加选择性通透能力下降,膜受体种类、数目和对配体的敏感性等发生变化;脂褐素在细胞内堆积,多种
克莱森重排的发现背景
克莱森重排(Claisen rearrangement)烯醇或酚的烯丙基 醚加热到200℃以仁时发生分子内重排,烯丙基从氧原子迁 移到碳原子上,称为克莱森重排。克莱森重排起初是在芳香化合物中发现的,这与当时(20世纪初期)合成化学家主要注意力集中的范围局限在芳香烃上有关。后来发现该反应可以拓展到非芳
纸层析的背景理论介绍
首先要了解什么叫分配层析;分配层析是利用混合物中各组分在两种不同溶剂中的分配系数不同而使物质分离的方法。分配系数是指一种溶质在两种互不相溶的溶剂中的溶解达到平衡时,该溶质在两种溶剂中所具有浓度之比。不同的物质因其在各种溶剂中的溶解度不同,因而也就有不同的分配系数。分配层析中应用最广泛的多孔支持物
原子吸收光谱的氘灯扣背景和自吸收扣背景的区别
原子吸收扣背景的3种常见方法:自吸收扣背景、氘灯扣背景和塞曼效应扣背景自吸收扣背景法缺点:1、可能会校正过度 2、灯损耗大,影响灯的寿命。氘灯扣背景法缺点:1、只能校正紫外区的背景信号,不能校正可见区的背景信号;2、空心阴极灯和氘灯的光斑很难重合,导致校正误差;3、有临近谱线的干扰时,可能会校正过度