微小磁涡流或成下一代内存材料

磁铁可在计算机中存储数据,利用磁场的方向,每个微型条形磁铁都可将一位内存存储为零或一。美国能源部阿贡国家实验室研究人员希望用微小的磁涡流取代条形磁铁。这些被称为斯格明子的涡流小到十亿分之一米,形成于某些磁性材料中。未来,它们可能会在新一代微电子技术中用于高性能计算机的内存。这项研究近日发表在《纳米快报》上。 计算机内存中的条形磁铁就像打了一个结的鞋带,解开它们几乎不需要任何能量,并且任何由于某些中断而发生故障的条形磁铁都会影响其他条形磁铁。相比之下,斯格明子就像系着双结的鞋带,无论你多么用力地拉一根绳子,鞋带仍然系着。因此,斯格明子对任何干扰都非常稳定。另一个重要特征是,研究人员可通过改变温度或施加电流来控制它们的行为。 研究人员对不同条件下的斯格明子行为有很多了解。为了研究它们,阿贡国家实验室团队开发了一个人工智能程序,该程序与高功率电子显微镜一起工作。显微镜可在非常低的温度下观察样品中的斯格明子。 该团队的磁性材料......阅读全文

微小磁涡流或成下一代内存材料

  磁铁可在计算机中存储数据,利用磁场的方向,每个微型条形磁铁都可将一位内存存储为零或一。美国能源部阿贡国家实验室研究人员希望用微小的磁涡流取代条形磁铁。这些被称为斯格明子的涡流小到十亿分之一米,形成于某些磁性材料中。未来,它们可能会在新一代微电子技术中用于高性能计算机的内存。这项研究近日发表在《纳

铁磁性材料涡流探伤时,为什么必须应用磁饱和技术?

铁磁性材料检测时,其磁导率随着激励电流形成的外加交变磁场H的变化而变化,使阻抗平面图上涡流信号矢量点P变化不定,严重干扰涡流仪对铁磁性材料的探伤等。所以对铁磁性材料的涡流探伤一般都要应用磁饱和技术,即增设一个磁饱和线圈。 

新内存材料保存数据不需要电-[图]

      计算机需要消耗大量电力用于跟踪没有储存到硬盘上的数据。美国人每年要花大约60亿美元去维持保存在内存中的数据。现在,科学家在 《自然》上报告发现了一种新的内存材料,能在不连续供电的情况下永久保存数据。   新发现的材料是一种有机晶体化合物,用廉价的构件组成。它同时也是一种铁电体,能在

抗磁材料和超导材料的区别

抗磁材料和超导材料的区别:1、抗磁性材料的磁矩与外磁场方向相反,而超导材料在超导态下对磁场表现出完全排斥的特性。2、抗磁性是指材料在外加磁场下不产生磁化的性质。抗磁材料的磁矩与外磁场方向相反,以减小外加磁场对材料的影响。3、超导性是指在低温下某些材料表现出零电阻和完全抗磁性的性质。超导材料在超导态下

慢速内存和快速内存可“合二为一”

  本报讯据美国物理学家组织网1月20日报道,美国北卡罗莱纳州立大学研究人员开发出一种新器件,该技术被认为是计算机内存研发领域取得的重大进步,将使大规模服务器群更节能,并使计算机的启动变得更快。   计算机存储器件传统上具有两种类型。慢速内存器件通常被用于诸如闪存这样的持久性数据存

永磁材料与超磁致伸缩材料的应用价值

  稀土永磁材料是将钐、钕混合稀土金属与过渡金属(如钴、铁等)组成的合金,用粉末冶金方法压型烧结,经磁场充磁后制得的一种磁性材料。稀土永磁分钐钴(SmCo)永磁体和钕铁硼(NdFeB)系永磁体,其中SmCo磁体的磁能积在15~30MGOe之间,NdFeB系永磁体的磁能积在27~50MGOe之间,被称

永磁材料与超磁致伸缩材料的应用价值

  稀土永磁材料是将钐、钕混合稀土金属与过渡金属(如钴、铁等)组成的合金,用粉末冶金方法压型烧结,经磁场充磁后制得的一种磁性材料。稀土永磁分钐钴(SmCo)永磁体和钕铁硼(NdFeB)系永磁体,其中SmCo磁体的磁能积在15~30MGOe之间,NdFeB系永磁体的磁能积在27~50MGOe之间,被称

宁波材料所在磁斯格明子材料研究的进展

  磁斯格明子是一种非共线磁涡旋结构并受拓扑保护的准粒子。磁斯格明子因其可做到纳米尺寸、非易失且易驱动,被认为在下一代自旋电子学器件如信息存储、逻辑运算或神经网络技术等领域将扮演重要角色。磁斯格明子的形成通常是由使磁矩倾向于垂直排列的反对称交换耦合(Dzyaloshinskii-Moriya int

太阳光球层内存在一个小尺度磁冠结构的拼接层吗?

  近日,由中国科学院云南天文台李焱研究员带领的研究团队,提出了一种通过分析p模式震荡频率来探测太阳大气层中小尺度磁场分布的新方法,并且发现太阳光球层中存在一个以前尚未被认识到的小尺度磁冠拼接层。该研究成果 “Can small-scale magnetic fields be the major

宁波材料所在柔性磁传感薄膜材料与器件研究获进展

   柔性智能可穿戴设备的快速发展,提出了磁电功能器件柔性化的要求。由于磁性材料的逆磁致伸缩特性,弯曲或拉伸状态所产生的应力/应变会改变磁性薄膜的磁各向异性,从而影响磁性器件的性能。如何避免应力磁各向异性对柔性磁性器件性能产生不利的影响,是柔性磁性薄膜与器件发展中所面临的重要挑战之一。  近年来,中

手性磁孤子材料研究取得新进展

  近期,强磁场中心张蕾研究员课题组和美国田纳西大学David G. Mandrus教授合作,对手性磁孤子材料Cr1/3NbS2的临界行为进行了研究,并取得了进展。相关研究结果以Tricritical point and phase diagram based on critical scaling

影响磁性复合材料磁特性的因素

1.1.1 磁粉磁粉性能的好坏是直接影响磁性复合物材料性能的关键因素之一。磁粉性能的优劣与材料、组成、颗粒大小、粒度分布及制造工艺有关。1.1.1.1 材料种类与组成的影响铁磁粉末都可以与塑料复合,目前通常使用钡、铭铁氧体为主。原因是钡、钮铁氧体具有磁特性稳定、矫顽力高、电阻率高、密度小、价廉等优点

Maxwell如何对磁滞材料进行建模(二)

3.激活磁滞模型解决方案二1.按常规方法输入材料的平均磁化曲线,并设置X,Y,Z为02.Core Loss Model> Hysteresis Model3.自动打开B-H曲线,输入Hci参数至此两种磁滞材料建模方法介绍完毕。

Maxwell如何对磁滞材料进行建模(一)

问题描述磁滞现象是铁磁材料的固有属性,电机、变压器使用的硅钢片属于软磁材料,剩磁与矫顽力都比较小,所以在电机设计过程中一般使用其平均磁化曲线,磁滞损耗包含在铁耗中,根据斯坦梅茨方程拟合计算其铁耗,这对电机、变压器稳态运行影响较小,但是在特殊工况下,磁滞现象会产生不良影响或者利用其特性开发新的产品。针

高斯计的永磁材料的磁特性简介

  高斯计被测对象-常用的永磁材料主要具有4种磁特性:  (1)高的最大磁能积。最大磁能积[符号为(BH)m]是永磁材料单位体积存储和可利用的最大磁能量密度的量度;  (2)高的矫顽(磁)力。矫顽力[符号为(H)c]是永磁材料抵抗磁的和非磁的干扰而保持其永磁性的量度;  (3)高的剩余磁通密度(符号

新型内存可在300℃高温下工作

  电子内存设备的性能会随着温度的升高而下降,但美国科学家提出了一种新的内存设计,却需要在超过600开(约327℃)高温下工作。这种纳米热机械存储器(Nano ThermoMechanical memory)利用热而非电,来记录、存储和恢复数据,未来有望应用于空间探索任务、深井钻探、内燃机等多个领域

常规无损检测法之涡流探伤方法

涡流探伤是由交流电流产生的交变磁场作用于待探伤的导电材料,感应出电涡流。如果材料中有缺陷,它将干扰所产生的电涡流,即形成干扰信号。用涡流探伤仪检测出其干扰信号,就可知道缺陷的状况。影响涡流的因素很多,即是说涡流中载有丰富的信号,这些信号与材料的很多因素有关,如何将其中有用的信号从诸多的信号中一一分离

五种无损检测方法概述

无损检测包括射线检测(RT)、超声检测(UT)、磁粉检测(MT)、渗透检测(PT)和涡流检测(ET)等五种检测方法。主要应用于金属材料制造的机械、器件等的原材料、零部件和焊缝,也可用于玻璃等其它制品。 射线检测适用于碳素钢、低合金钢、铝及铝合金、钛及钛合金材料制机械、器件等的焊缝及钢管对接环缝。射线

涡流探伤仪的涡流检测的优越性

  涡流检测的优越性主要包括:  (1)对小裂纹和其它缺陷的敏感性;  (2)检测表面和近表面缺陷速度快,灵敏度高;  (3)检验结果是即时性的;  (4)设备接口性好;  (5)仅需要作很少的准备工作;  (6)测试探头不需要接触被测物;  (7)可检查形状尺寸复杂的导体。

涂层测厚仪的检测原理和分类

  到现今为止,市面上测厚仪无损检测技术已成为加工工业为用户进行成品质量检测和保证产品达到优质标准的必备手段。测厚仪大致有以下三种:应用磁性测量法、涡流测量法以及超声波测量法的三类测厚仪。   测厚仪无损检测中常用的原理方法一般有:   磁性测量法   适用于导磁材料上的非导磁层厚度测量。导

涂层测厚仪的检测原理和分类

  到现今为止,市面上测厚仪无损检测技术已成为加工工业为用户进行成品质量检测和保证产品达到优质标准的必备手段。测厚仪大致有以下三种:应用磁性测量法、涡流测量法以及超声波测量法的三类测厚仪。  测厚仪无损检测中常用的原理方法一般有:  磁性测量法  适用于导磁材料上的非导磁层厚度测量。导磁材料一般为:

涂层测厚仪的检测原理和分类

  到现今为止,市面上测厚仪无损检测技术已成为加工工业为用户进行成品质量检测和保证产品达到优质标准的必备手段。测厚仪大致有以下三种:应用磁性测量法、涡流测量法以及超声波测量法的三类测厚仪。  测厚仪无损检测中常用的原理方法一般有:  磁性测量法  适用于导磁材料上的非导磁层厚度测量。导磁材料一般为:

LDY80S电磁流量计使用过程中电磁性损耗的原因

LDY-80S电磁流量计是依托规范的制造体系而开发的,其先进的设计理念保证了产品的高精度和高可靠性,与老式电磁流量计相比,其拥有测量精度高,可靠性强,稳定性好,功能齐全,使用寿命长等优点。电磁流量计的电磁损耗是有多种原因的,可能周围存在磁场的干扰而产生损耗,也有可能流量计自身的构造造成信号传速的干扰

宁波膜厚仪电涡流测量原理

 宁波膜厚仪采用磁感应原理时,利用从测头经过非铁磁覆层而流入铁磁基体的磁通膜厚仪膜厚仪的大小,来测定覆层厚度。也可以测定与之对应的磁阻的大小,来表示其覆层厚度。覆层越厚,则磁阻越大,磁通越小。利用磁感应原理的测厚仪,原则上可以有导磁基体上的非导磁覆层厚度。一般要求基材导磁率在500以上。宁波膜厚仪电

几种常规无损检测的比较与区别

我们常见的无损检测有:磁粉检测(Magnetic Particle Testing)、超声检测(Ultrasonic Testing)、渗透检测(Penetrant Testing)、射线检测(Radiographic Testing)、涡流检测(Eddy Current Testing)。这几种无

涂层测厚仪五个分类

 1、磁性测厚法:适用导磁材料上的非导磁层厚度测量。导磁材料一般为:钢,铁,银,镍。此种方法测量精度高。     2、涡流测厚法:适用导电金属上的非导电层厚度测量。此种较磁性测厚法精度低。    3、超声波测厚法:目前辆还没有此种方法测量涂镀层厚度的,国外个别厂家有这样的仪器,适用多层涂镀层厚度的测

五大常规无损检测概述与比较

  五大常规探伤概述   1、射线探伤方法(RT)   射线探伤是利用射线的穿透性和直线性来探伤的方法。这些射线虽然不会像可见光那样凭肉眼就能直接察知,但它可使照相底片感光,也可用特殊的接收器来接收。常用于探伤的射线有x光和同位素发出的γ射线,分别称为x光探伤和γ射线探伤。当这些射线穿过(照射)

铁磁材料居里温度测试实验仪功能作用

 磁性材料在电力、通讯、电子仪器、汽车、计算机和信息存储等域有着十分广泛的应用,近年来已成为促新技术发展和当代文明步不可替代的材料,因此在大学物理实验开设关于磁性材料的基本性质的研究显得尤为重要。居里温度是表征磁性材料基本性的物理量.反映了磁性材料由铁磁性转变为顺磁性的相变温度.  本实验仪器根据铁

上海光机所在磁光晶体材料研究中取得进展

  磁光晶体在磁光隔离器、磁光调制器、磁光相移器、磁光开关和环形器等方面具有重要应用。目前常用的磁光晶体是铽镓石榴石晶体(TGG),但由于其在紫外波段(

涂层测厚仪原理分类

对材料表面保护、装饰形成的覆盖层,如涂层、镀层、敷层、贴层、化学生成膜等,在有关国家和国际标准中称为覆层(coating)。  覆层厚度测量已成为加工工业、表面工程质量检测的重要一环,是产品达到优等质量标准的必备手段。为使产品国际化,我国出口商品和涉外项目中,对覆层厚度有了明确的要求。涂层测厚仪原