宁波材料所在磁斯格明子材料研究的进展

磁斯格明子是一种非共线磁涡旋结构并受拓扑保护的准粒子。磁斯格明子因其可做到纳米尺寸、非易失且易驱动,被认为在下一代自旋电子学器件如信息存储、逻辑运算或神经网络技术等领域将扮演重要角色。磁斯格明子的形成通常是由使磁矩倾向于垂直排列的反对称交换耦合(Dzyaloshinskii-Moriya interaction,DMI)引起的。同时,DMI也是凝聚态物理等基础科学研究中的重要物理相互作用,因而DMI和磁斯格明子的研究已成为自旋电子学领域、量子材料研究的热点。 DMI的出现要求打破磁性材料的空间反演对称性及强的自旋轨道耦合作用(spin-orbital coupling,SOC)。因此,目前实验上大多利用磁性薄膜和具有强SOC的重金属薄膜形成异质结来诱导出大的DMI,实现磁斯格明子态,这些材料在实际应用过程中仍存在着如何保证磁斯格明子的室温稳定性、可控读写和高密度等亟需解决的问题。随着二维铁磁性薄膜的发现,二维材料在自旋电子......阅读全文

宁波材料所在磁斯格明子材料研究的进展

  磁斯格明子是一种非共线磁涡旋结构并受拓扑保护的准粒子。磁斯格明子因其可做到纳米尺寸、非易失且易驱动,被认为在下一代自旋电子学器件如信息存储、逻辑运算或神经网络技术等领域将扮演重要角色。磁斯格明子的形成通常是由使磁矩倾向于垂直排列的反对称交换耦合(Dzyaloshinskii-Moriya int

科学家实现对磁斯格明子产生与湮灭的操控

近日,中山大学物理学院副教授侯玉升课题组与美国加州大学欧文分校物理与天文系教授Ruqian Wu合作在磁斯格明子研究中取得重要进展。他们在国际上首次提出利用磁各向异性的可控性调控本征磁斯格明子态与铁磁态之间的转换,从而实现对磁斯格明子产生与湮灭的操控。相关成果以封面文章的形式发表于《纳米快报》(Na

发现铁电材料中室温电极化斯格明子晶格

  2015年,中国科学院金属研究所研究员马秀良、朱银莲和博士唐云龙等通过PbTiO3/SrTiO3铁电多层膜的设计实施应变调控,发现铁电材料中的通量全闭合畴结构并成功制备出由顺时针和逆时针闭合结构交替排列所构成的大尺度周期性阵列(Science 2015)。该项工作发表后迅速激发了国际上关于新型铁

物理所的又一发现!磁性二维晶体中拓扑磁性斯格明子

  磁性斯格明子(Magnetic Skyrmion)是一种具有手性自旋的纳米磁畴结构,具有拓扑保护性、低驱动电流密度,及磁、电场和温度等多物理调控的特性,是未来高密度、高速度、低能耗信息存储器件的核心理想存储单元。开发更多优异性能的磁性斯格明子新材料是目前磁电子学领域的研究热点,也是推进磁性斯格明

研究发现铁电斯格明子的临界厚度不遵循经典Kittel定律

  近期,中国科学院金属研究所沈阳材料科学国家研究中心马秀良研究团队澄清了斯格明子的临界尺寸问题。这一结果是继发现通量全闭合、麦纫、电偶极子波之后,该团队在有关铁电材料拓扑畴组态方面的又一项重要突破,为与铁磁材料类比的结构特性增添了新的实质性内容,并为探索以铁电薄膜为基础的电子器件提供了新的参考和借

科学家在二维量子磁体中发现“拓扑克尔效应”

近日,中国科学院合肥物质科学研究院与中国科学技术大学等合作,依托稳态强磁场实验装置(SHMFF),在二维新型量子磁体斯格明子元激发的理论与实验研究中取得进展,提出“拓扑克尔效应”的概念。斯格明子的概念起源于粒子物理,被广泛应用于描述凝聚态磁性材料中一类独特的拓扑元激发,其自旋在实空间以旋涡状或环状排

X射线诱导产生单个零场斯格明子及其二维“人工晶体”

  磁斯格明子具有尺寸小和易电流驱动的优点,被认为可以应用于下一代高能效、高密度的磁性存储器当中。而斯格明子的精确产生则是进一步研究斯格明子物理特性及相关器件的前提。最近,中国科学院物理研究所/北京凝聚态物理国家研究中心磁学国家重点实验室M02课题组的光耀、刘艺舟、特聘研究员于国强、研究员韩秀峰等人

金属所发现铁电斯格明子的临界厚度不遵循经典Kittel定律

近期,中国科学院金属研究所沈阳材料科学国家研究中心马秀良研究团队澄清了斯格明子的临界尺寸问题。这一结果是继发现通量全闭合、麦纫、电偶极子波之后,该团队在有关铁电材料拓扑畴组态方面的又一项重要突破,为与铁磁材料类比的结构特性增添了新的实质性内容,并为探索以铁电薄膜为基础的电子器件提供了新的参考和借鉴。

物理所等发现多拓扑态宽温区磁性斯格明子

  磁性斯格明子(Magnetic Skyrmion)是一种具有手性自旋的纳米磁畴结构单元。由于它具有拓扑保护性、低驱动电流密度(比驱动传统畴壁低5~6个数量级),以及磁场、温度和电场等多物理作用调控的特性,磁性斯格明子被认为是未来高密度、高速度、低能耗信息存储器件的核心材料。然而,目前大部分磁性斯

二维量子磁体中观察到新奇“拓扑克尔效应”

记者7日从中国科学技术大学获悉,该校国际功能材料量子设计中心访问博士后李肖音等,与中国科学院强磁场科学中心等单位合作,在二维新型量子磁体斯格明子元激发的理论与实验研究中取得重要进展。他们创造性地提出了“拓扑克尔效应”的概念,并将研究成果日前在线发表于国际期刊《自然·物理》。斯格明子的概念起源于粒子物

合肥研究院等在拓扑磁斯格明子研究中取得新进展

  斯格明子(Skyrmion:S)是近几年才发现的新型拓扑纳米磁结构,在低能耗高密度磁存储器件方面具有潜在的应用价值而备受关注。中国科学院合肥物质科学研究院强磁场科学中心田明亮研究组的副研究员杜海峰率先研究了纳米条带中S的形成与运动规律,相关的实验结果于10月9日以Edge-mediated sk

利用斯格明子开发超紧凑数据存储

3月21日,新加坡科技研究局和新加坡国立大学的研究人员在《自然》发表论文,报告一种通过编码单个斯格明子(skyrmion)来读取和写入信息的方式,这是实现基于斯格明子的数据存储设备的关键一步,有助于开发大规模低能耗数据存储。斯格明子是一种复杂的漩涡状自旋结构,具有较高的稳定性,且可以在纳米尺度上进行

科学家在实空间首次观测到磁浮子

   近日,中科院合肥物质科学院强磁场科学中心研究员杜海峰和德国合作者组成的团队,利用电子全息技术在准二维螺旋磁性材料FeGe纳米结构中实验发现一种被称为“磁浮子”的新型三维局域磁结构,相关成果近日发表于《自然—纳米技术》。 二进制是数据存储的基础,二进制数据是用“0”和“1”两个数码来表示的数

磁畴壁拓扑结构在实验上的发现与调控

  兼具温度、电流、磁场等多物理场协同调控的高分辨洛伦兹透射电镜在实空间探索纳米尺度新型磁畴结构、原位揭示与磁性相关的新奇物理现象微观机制以及自旋原理性器件应用方面发挥着越来越重要的作用。中国科学院物理研究所/北京凝聚态物理国家研究中心磁学实验室张颖研究团队在沈保根院士总体组织下,近几年利用高分辨磁

合肥研究院实现单个斯格明子的电探测

  近日,中国科学院合肥物质科学研究院强磁场科学中心田明亮课题组在斯格明子(Skyrmions,以下简称S)材料研究中取得新进展:该课题组在国际上首次利用传统电学方法探测到单个斯格明子的产生与湮灭过程。7月6日,课题组杜海峰的论文以《螺旋磁体MnSi纳米线中磁场驱动的Skyrmion团簇态的量子转变

国家重点实验室M05研究组成功制备磁斯格明子微纳器件

  磁斯格明子(Magnetic Skyrmion)是一种具有手性自旋的纳米磁畴结构单元。由于它具有拓扑保护稳定性、低驱动电流密度(比驱动传统磁畴壁低5~6个数量级)以及对磁场、温度和电场等多物理作用灵敏响应等特性,被认为是未来高密度、高速度、低能耗存储器件的理想信息载体。  磁斯格明子存储器件的设

局域共振结构中观测到声学斯格明子模式

安徽理工大学力学与光电物理学院副教授吴宏伟团队,针对声学系统中速度矢量场的矢量特性和分布调控展开理论研究和实验观测,实现了速度场的斯格明子模式分布和局部调控,有效拓展了操控矢量场的途径,为未来实现高速、高密度声波信息存储和传输提供了更多调控自由度。相关研究成果日前发表于《应用物理快报》。实验观测声学

科学家发现多拓扑荷特性“磁束子”

  近日,中国科学院合肥物质科学研究院强磁场科学中心联合安徽大学、美国新罕布什尔大学,在拓扑磁结构及其电流操控研究中取得重要进展,理论和实验上首次发现多拓扑荷特性“磁束子”,将拓扑磁电子学研究对象从单位拓扑荷扩展到多拓扑荷,揭示了磁性材料中拓扑磁结构的多样性,为未来开发多态存储、逻辑及信息处理器件提

我国科学家首次实验验证二维磁性材料纳米结构磁浮子

   在国家自然科学基金项目(项目编号:51622105、11474290)等资助下,中国科学院强磁场科学中心杜海峰研究员和德国尤利西研究中心R.E. Dunin-Borkowski教授团队及N.S. Kiselev博士研究小组合作,利用电子全息技术在准二维手性磁性材料纳米结构中发现一种称之

我学者在氧化物薄膜中直接观测到“斯格明子”

  “斯格明子”是英国物理学家托尼·斯格明发现的一种奇特粒子结构,被认为是制造下一代信息存储设备的理想材料。近期,中科院强磁场科学中心陆轻铀研究员课题组利用自主研制的强磁场磁力显微镜,首次实现了氧化物薄膜中斯格明子的直接观测,为人们从微观角度认识和操控斯格明子提供了参考。国际权威学术期刊《自然·材料

合肥研究院等在斯格明子材料研究中取得进展

  具有非中心对称立方结构的金属螺旋磁体,如MnSi、FeGe,由于同时存在自旋、轨道、晶格多种自由度的关联与耦合,表现出丰富的材料特性,一直是金属磁性材料领域研究的热点与前沿。2009年,科研人员在此类材料中发现一种拓扑稳定且具有粒子特性的磁结构,即磁斯格明子(Skyrmion)。斯格明子具有尺寸

研究实现可逆电流调控拓扑磁转变

  近日,中国科学院合肥物质科学研究院强磁场科学中心在电操控新型磁结构动力学研究中取得新进展,相关研究成果以Current-Controlled Topological Magnetic Transformations in a Nanostructured Kagome Magnet(《在Kago

合肥研究院等在拓扑磁结构的转变研究中取得进展

  近期,中国科学院合肥物质科学研究院强磁场中心研究团队等利用透射电镜定量电子全息磁成像技术,在单轴手性磁体Cr1/3NbS2中发现了磁孤子向磁斯格明子的拓扑相变。相关研究成果发表在Advanced Materials上。  拓扑磁结构是构筑新型磁存储器的基本单元。在手性磁体中,拓扑磁结构的形成和自

微小磁涡流或成下一代内存材料

  磁铁可在计算机中存储数据,利用磁场的方向,每个微型条形磁铁都可将一位内存存储为零或一。美国能源部阿贡国家实验室研究人员希望用微小的磁涡流取代条形磁铁。这些被称为斯格明子的涡流小到十亿分之一米,形成于某些磁性材料中。未来,它们可能会在新一代微电子技术中用于高性能计算机的内存。这项研究近日发表在《纳

晶体中霍普夫子的实验证据首现

 霍普夫子是几十年前预测的磁自旋结构,近年来已成为热门且具有挑战性的研究课题。22日发表在《自然》杂志上的一项研究中,来自瑞典、德国和中国的科学家合作提出有关霍普夫子的第一个实验证据。  瑞典乌普萨拉大学物理系研究员菲利普·雷巴科夫表示,从基础和应用的角度来看,该研究结果很重要,因为实验物理学和抽象

我国揭示石墨烯/铁磁金属界面拓扑磁结构Rashba效应诱导

  磁斯格明子,一种受拓扑保护的磁涡旋结构(如图1),因其可以做到纳米尺寸、非易失且易驱动从而非常适合应用在信息存储、逻辑运算或者神经网络技术等领域,是近些年来自旋电子学研究的热点。然而要实现磁斯格明子在自旋电子学器件上的应用还要解决诸如其室温下的稳定性、可控读写、高密度以及与当前磁存储结构兼容等诸

二维材料首现奇异“多铁性”状态

  美国麻省理工学院物理学家在单原子薄材料中发现了一种奇异的“多铁性”状态。他们的观察首次证实了多铁性可存在于完美的二维材料中。发表在最新一期《自然》杂志上的这一发现,为开发更小、更快、更高效的数据存储设备铺平了道路,这些设备由超薄的多铁性比特和其他新的纳米级结构组成。  研究作者、麻省理工学院物理

研究实现反铁磁铁磁转变磁畴直接成像

原文地址:http://news.sciencenet.cn/htmlnews/2023/10/510471.shtm

三元MAX相中实现二维铁磁材料的构筑

  近日,中国科学院宁波材料技术与工程研究所以Near-Room-Temperature Ferromagnetic Behavior of Single-Atom-Thick 2D Iron in Nanolaminated Ternary MAX Phases为题在Applied Physics

基金委发布“二维磁性及拓扑自旋物态”专项项目指南

原文地址:http://news.sciencenet.cn/htmlnews/2022/9/487091.shtm 二维磁性及拓扑自旋物态是磁学和自旋电子学研究的前沿领域,对其深入研究不仅可以极大丰富磁学和自旋电子学物理原理,也为研制新原理自旋信息器件提供理想的研究平台。国际上二维磁性材料研究