tRNA对氨基酸的识别作用介绍

tRNA通过反密码子和mRNA上的密码子相互配对,将特定的氨基酸运送到核糖体上肽链合成位点上,但是tRNA如何来识别特定的氨基酸呢?这就涉及tRNA的“身份”(identity)问题,这个问题是核酸领域的热点之一。需要解决几个问题:(1)tRNA怎样接受特定的氨基酸,氨基酰-tRNA合成酶怎样识别tRNA;(2)tRNA中的哪些结构和接受特定氨基酸有关。......阅读全文

tRNA对氨基酸的识别作用介绍

tRNA通过反密码子和mRNA上的密码子相互配对,将特定的氨基酸运送到核糖体上肽链合成位点上,但是tRNA如何来识别特定的氨基酸呢?这就涉及tRNA的“身份”(identity)问题,这个问题是核酸领域的热点之一。需要解决几个问题:(1)tRNA怎样接受特定的氨基酸,氨基酰-tRNA合成酶怎样识别t

tRNA对氨基酸的识别

tRNA通过反密码子和mRNA上的密码子相互配对,将特定的氨基酸运送到核糖体上肽链合成位点上,但是tRNA如何来识别特定的氨基酸呢?这就涉及tRNA的“身份”(identity)问题,这个问题是核酸领域的热点之一。人们需要解决几个问题:(1)tRNA怎样接受特定的氨基酸,氨基酰-tRNA合成酶怎样识

简述tRNA对氨基酸的识别

  tRNA通过反密码子和mRNA上的密码子相互配对,将特定的氨基酸运送到核糖体上肽链合成位点上,但是tRNA如何来识别特定的氨基酸呢?这就涉及tRNA的“身份”(identity)问题,这个问题是核酸领域的热点之一。人们需要解决几个问题:  (1)tRNA怎样接受特定的氨基酸,氨基酰-tRNA合成

氨基酸的对人体的作用?

  氨基酸在人体内通过代谢可以发挥下列一些作用:①合成组织蛋白质;②变成酸、激素、抗体、肌酸等含氨物质;③转变为碳水化合物和脂肪;④氧化成二氧化碳和水及尿素,产生能量。

支链氨基酸对人体的作用

支链氨基酸补剂,一般称为BCAAs,这些年在那些想增加瘦体重和运动成绩的运动员当中非常受欢迎。支链氨基酸包括缬氨酸、亮氨酸、异亮氨酸,通常的观点认为支链氨基酸可以通过血流进入大脑,降低大脑的5羟色胺的产生,而5羟色胺可使人产生疲倦感。通过减少5羟色胺的含量可减轻脑力疲劳。如今已经有相当数量的科研支持

上海生科院揭示甲基化酶TrmJ对底物tRNA的识别机制

  7月21日,国际学术期刊《核酸研究》(Nucleic Acids Research)在线发表了中国科学院上海生命科学研究院生物化学与细胞生物学研究所王恩多研究组题为tRNA recognition by a bacterial tRNA Xm32 modification enzyme from

研究揭示人线粒体丙氨酰tRNA合成酶识别tRNA独特机制

  2月15日,国际学术期刊《核酸研究》(Nucleic Acids Research)发表了中国科学院生物化学与细胞生物学研究所王恩多研究组最新研究成果“The G3-U70-independent tRNA recognition by human mitochondrial alanyl-tR

上海生科院揭示tRNA氨基酸在蛋白质生物合成中的作用

上海生科院揭示了tRNA氨基酸接受末端在蛋白质生物合成及其精确性调控中的作用  7月20日,《核酸研究》(Nucleic Acids Research)在线发表了中科院上海生命科学研究院生化与细胞所王恩多研究组的最新研究成果。该研究揭示了tRNA氨基酸接受末端在蛋白质生物合成及其精确性

tRNA的功能介绍

作为“搬运工具”的tRNA有很多种,体内20种氨基酸都有其自已特有的tRNA,所以,tRNA的种类不少于20种。tRNA在ATP供应能量和酶的作用下,可分别与特定的氨基酸结合。每个tRNA都有一个由三个核苷酸编成的“反密码”。这个反密码可以根据碱基配对的原则与mRNA上对应的密码配对,而且只有当反密

tRNA的结构介绍

1.tRNA结构保守:70-80个碱基。2.二级结构:三叶草。3.五个主要臂:(1)接受臂:携带氨基酸;(2)TΨC臂;(3)反密码子臂;(4)双氢尿嘧啶臂(DHU);(5)附加臂:大小反映了整个tRNA分子的大小,根据其大小,tRNA分为两类:第Ⅰ类tRNA,3/4 tRNA只有3-5个碱基的附加

氨基酸脱氨作用介绍

氨基酸脱氨后生成的 α-酮酸可进一步代谢。主要有以下三方面:1.经氨基化生成非必需氨基酸实验证明人体不能合成赖、异亮、苯丙、亮、色、缬、苏、蛋等8种氨基酸相对应的α-酮酸,因而这些氨基酸不能在体内合成,必须从食物摄取,称为营养必需氨基酸。其它十二种氨基酸则称为营养非必需氨基酸,所谓非必需氨基酸并不是

链霉菌亮氨酰tRNA合成酶识别两类亮氨酸tRNA的分子机理

  国际学术期刊《核酸研究》(Nucleic Acids Research)在线发表了中国科学院分子细胞科学卓越创新中心/生物化学与细胞生物学研究所王恩多研究组的最新研究成果:LeuRS can leucylate type I and type II tRNALeus in Streptomyce

NAR:古细菌NSun6识别tRNA底物的分子机理

  中国科学院生物化学与细胞生物学研究所王恩多研究组的最新发表了题为“Archaeal NSun6 catalyzes m5C72 modification on a wide-range of specific tRNAs”的文章,揭示了PH1991确实是P. horikoshii tRNA:m5

tRNA,-rRNA-,-mRNA有什么作用

mrna是以dna为模板复制的,作为肽链合成的模板;rrna是核糖体的组成部分,其作用是在肽链合成过程中催化肽键的形成;trna则负责把氨基酸搬运到核糖体处合成肽链。

副密码子的概念

mRNA的核苷酸顺序与蛋白质的氨基酸顺序之间在结构上并没有直接的相应关系,二者也不发生直接的相互作用。在这两种不同的遗传语言之间,必须通过译员才能互相沟通。扮演这种译员角色的就是各种tRNA分子。如果没有tRNA的存在,也就无所谓密码子了。因此密码子的意义并不是单独由mRNA决定的,而是由mRNA和

关于副密码子的概念介绍

  mRNA的核苷酸顺序与蛋白质的氨基酸顺序之间在结构上并没有直接的相应关系,二者也不发生直接的相互作用。在这两种不同的遗传语言之间,必须通过译员才能互相沟通。扮演这种译员角色的就是各种tRNA分子。如果没有tRNA的存在,也就无所谓密码子了。因此密码子的意义并不是单独由mRNA决定的,而是由mRN

副密码子的概念介绍

  mRNA的核苷酸顺序与蛋白质的氨基酸顺序之间在结构上并没有直接的相应关系,二者也不发生直接的相互作用。在这两种不同的遗传语言之间,必须通过译员才能互相沟通。扮演这种译员角色的就是各种tRNA分子。如果没有tRNA的存在,也就无所谓密码子了。因此密码子的意义并不是单独由mRNA决定的,而是由mRN

概述蛋白质合成的相关信息

  原核细胞中起始氨基酸活化后,还要甲酰化,形成甲酰蛋氨酸tRNA,由N10甲酰四氢叶酸提供甲酰基。而真核细胞没有此过程。前面讲过运载同一种氨基酸的一组不同tRNA称为同功tRNA。一组同功tRNA由同一种氨酰基tRNA合成酶催化。氨基酰tRNA合成酶对tRNA和氨基酸两者具有专一性,它对氨基酸的识

必须氨基酸的种类和作用介绍

成年人必需氨基酸有8种:异亮氨酸、亮氨酸、赖氨酸、甲硫氨酸、苯丙氨酸、苏氨酸、色氨酸、缬氨酸。组氨酸在婴幼儿体内合成不能满足需要,所以婴幼儿(4岁以下)所需的必需氨基酸有9种。其余的氨基酸为非必需氨基酸,可以通过食物获取,也可以在体内由其他营养物质合成。半胱氨酸和酪氨酸在体内能分别由甲硫氨酸和苯丙氨

氨基酸的生理调节作用介绍

蛋白质在食物营养中的作用是显而易见的,但它在人体内并不能直接被利用,而是通过变成氨基酸小分子后被利用的。即它在人体的胃肠道内并不直接被人体所吸收,而是在胃肠道中经过多种消化酶的作用,将高分子蛋白质分解为低分子的多肽或氨基酸后,在小肠内被吸收,沿着肝门静脉进入肝脏。一部分氨基酸在肝脏内进行分解或合成蛋

细胞识别的作用

细胞识别是指细胞对同种细胞、异种细胞、同源细胞、异源细胞的识别现象。细胞识别的作用部位位于细胞膜,细胞通过其表面的糖链参与识别作用。

氨基酸的作用医疗作用

氨基酸在医药上主要用来制备复方氨基酸输液,也用作治疗药物和用于合成多肽药物。用作药物的氨基酸有一百几十种,其中包括构成蛋白质的氨基酸有20种和构成非蛋白质的氨基酸有100多种。 由多种氨基酸组成的复方制剂在现代静脉营养输液以及“要素饮食”疗法中占有非常重要的地位,对维持危重病人的营养,抢救患者生命

氨基酸脱氨基作用介绍

氨基酸脱氨基作用是氨基酸分解代谢的最主要反应。体内大多数组织细胞均可进行。氨基酸可通过多种方式脱去氨基,如转氨基、氧化脱氨基、联合脱氨基等,其中以联合脱氨基最为重要。氨基酸脱氨基的产物为α-酮酸和氨.1.转氨基作用大多数氨基酸在进行分解代谢之初,首先通过转氨基作用将α-氨基转移给α-酮戊二酸,使其形

女院士最新JBC解析两个相对发现

  研究简介   研究方向为酶与核酸的相互作用,氨基酰-tRNA合成酶是蛋白质生物合成过程中的一类关键酶。它催化蛋白质生物合成过程中的第一步反应-tRNA的氨基酰化反应。氨基酰-tRNA合成酶对tRNA的精确识别保证了遗传信息由核酸传递到蛋白质的精确性。 所以研究氨基酰-tRNA合成酶具有重要

tRNA相关研究背景介绍

  A. 概述   转运RNA(Transfer Ribonucleic Acid,tRNA)是生物体内含量最为丰富的短链非编码RNA分子。它携带并转运氨基酸,参与蛋白翻译,是连接mRNA与蛋白质的重要桥梁。尽管tRNA广泛存在于生物体内,但不同机体基因组对于特定密码子的偏好性不同,从而导致tRN

tRNA相关研究背景介绍

  A. 概述   转运RNA(Transfer Ribonucleic Acid,tRNA)是生物体内含量最为丰富的短链非编码RNA分子。它携带并转运氨基酸,参与蛋白翻译,是连接mRNA与蛋白质的重要桥梁。尽管tRNA广泛存在于生物体内,但不同机体基因组对于特定密码子的偏好性不同,从而导致tRN

tRNA相关研究背景介绍

  A. 概述   转运RNA(Transfer Ribonucleic Acid,tRNA)是生物体内含量最为丰富的短链非编码RNA分子。它携带并转运氨基酸,参与蛋白翻译,是连接mRNA与蛋白质的重要桥梁。尽管tRNA广泛存在于生物体内,但不同机体基因组对于特定密码子的偏好性不同,从而导致tRN

tRNA相关研究背景介绍

A. 概述转运RNA(Transfer Ribonucleic Acid,tRNA)是生物体内含量最为丰富的短链非编码RNA分子。它携带并转运氨基酸,参与蛋白翻译,是连接mRNA与蛋白质的重要桥梁。尽管tRNA广泛存在于生物体内,但不同机体基因组对于特定密码子的偏好性不同,从而导致tRNA谱的差

转移核糖核酸的功能特点

主要是携带氨基酸进入核糖体,在mRNA指导下合成蛋白质。即以mRNA为模板,将其中具有密码意义的核苷酸顺序翻译成蛋白质中的氨基酸顺序(见蛋白质的生物合成、核糖体)。tRNA与mRNA是通过反密码子与密码子相互作用而发生关系的。在肽链生成过程中,第一个进入核糖体与mRNA起始密码子结合的tRNA叫起始

转移核糖核酸功能介绍

主要是携带氨基酸进入核糖体,在mRNA指导下合成蛋白质。即以mRNA为模板,将其中具有密码意义的核苷酸顺序翻译成蛋白质中的氨基酸顺序(见蛋白质的生物合成、核糖体)。tRNA与mRNA是通过反密码子与密码子相互作用而发生关系的。在肽链生成过程中,第一个进入核糖体与mRNA起始密码子结合的tRNA叫起始