第三碱基简并性的概念

中文名称第三碱基简并性英文名称third-base degeneracy定 义特指密码子第三碱基的简并性。决定同一种氨基酸密码子的头两个碱基是相同的,第三位碱基的改变不影响翻译出正常的氨基酸的现象。应用学科生物化学与分子生物学(一级学科),核酸与基因(二级学科)......阅读全文

第三碱基简并性的概念

中文名称第三碱基简并性英文名称third-base degeneracy定  义特指密码子第三碱基的简并性。决定同一种氨基酸密码子的头两个碱基是相同的,第三位碱基的改变不影响翻译出正常的氨基酸的现象。应用学科生物化学与分子生物学(一级学科),核酸与基因(二级学科)

细胞化学词汇第三碱基简并性

中文名称:第三碱基简并性英文名称:third-base degeneracy定  义:特指密码子第三碱基的简并性。决定同一种氨基酸密码子的头两个碱基是相同的,第三位碱基的改变不影响翻译出正常的氨基酸的现象。应用学科:生物化学与分子生物学(一级学科),核酸与基因(二级学科)

简并引物的概念

简并引物是指代表编码单个氨基酸所有不同碱基序列可能性引物的混合物。PCR为了增加特异性,可以参考密码子使用表,根据不同生物的碱基使用偏好,减少简并性。简并度越低,产物特异性越强,设计引物时应尽量选择简并性小的氨基酸,并避免引物3’末端简并。

碱基修复的概念

中文名称碱基修复英文名称base repair定  义由于某些原因可导致核酸碱基错配或其他损伤,生物体内有多个系统可修复错配或损伤的碱基,如碱基切除修复。应用学科生物化学与分子生物学(一级学科),核酸与基因(二级学科)

碱基修复的概念

中文名称碱基修复英文名称base repair定  义由于某些原因可导致核酸碱基错配或其他损伤,生物体内有多个系统可修复错配或损伤的碱基,如碱基切除修复。应用学科生物化学与分子生物学(一级学科),核酸与基因(二级学科)

修饰碱基的概念

又称稀有碱基,这些碱基在核酸分子中含量比较少,但他们是天然存在不是人工合成的,是核酸转录之后经甲基化、乙酰化、氢化、氟化以及硫化而成。

稀有碱基的概念

又称修饰碱基,这些碱基在核酸分子中含量比较少,但他们是天然存在不是人工合成的,是核酸转录之后经甲基化、乙酰化、氢化、氟化以及硫化而成。

修饰碱基的概念

又称修饰碱基,这些碱基在核酸分子中含量比较少,但他们是天然存在不是人工合成的,是核酸转录之后经甲基化、乙酰化、氢化、氟化以及硫化而成。

混合碱基符号的概念

中文名称混合碱基符号英文名称symbols for mix-bases定  义两种或多种碱基(核苷)混合物的表示符号,或未完全确定可能属于某两种或多种碱基(核苷)的符号:R表示A+G;Y表示C+T;M表示A+C;K表示G+T;S表示C+G;W表示A+T;H表示A+C+T;B表示C+G+T;V表示A+

碱基对的基本概念

碱基对是形成DNA、RNA单体以及编码遗传信息的化学结构。组成碱基对的碱基包括A、G、T、C、U。严格地说,碱基对是一对相互匹配的碱基(即A:T,G:C,A:U相互作用)被氢键连接起来。然而,它常被用来衡量DNA和RNA的长度(尽管RNA是单链)。它还与核苷酸互换使用,尽管后者是由一个五碳糖、磷酸和

碱基互补配对的概念和原则

碱基互补配对是指核酸分子中各核苷酸残基的碱基按A与T、A与U和G与C的对应关系互相以氢键相连的现象。它是沃森和克里克首先在DNA双螺旋结构模型中提出来的,后来发现,不仅在DNA复制中有这种规律,在转录过程DNA和RNA关系中也有类似的规律。甚至单链RNA中凡在空间靠近、可以氢键互相结合的碱基,也能这

碱基对的概念和作用

碱基对,是一对相互匹配的碱基(即A—T, G—C,A—U相互作用)被氢键连接起来。它常被用来衡量DNA和RNA的长度(尽管RNA是单链)。它还与核苷酸互换使用,尽管后者是由一个五碳糖、磷酸和一个碱基组成。碱基对是形成DNA、RNA单体以及编码遗传信息的化学结构。组成碱基对的碱基包括A、G、T、C、U

碱基置换的概念和类型

碱基置换(substitution)包括两种类型:转换(transition)是由嘌呤置换嘌呤或嘧啶置换嘧啶。颠换(transversion) 是指嘌呤置换嘧啶或嘧啶置换嘌呤。如碱基置换发生于编码多肽的区,则因可影响密码子而使转录、翻译遗传信息发生变化,因此可以出现一种氨基酸取代原有的某一种氨基酸。

简并PCR

简并PCR就是引物合成的时候在某个位置用两种以上的碱基代替原来的单碱基渗入oligo链合成的是一堆混和物实际上能够起做用的在其中占一定比例这个比例一般用简并度表示比如agctN合成的时候最后一位用4种碱基反应真正用的agctc,占总数的1/4agctNN其中agctCC就占1/16一般公司推荐3‘端

密码简并

中文名称密码简并英文名称code degeneracy定  义几种密码子编码同一种氨基酸的现象。通常具有简并性的氨基酸密码子的第一个和第二个字母是相同的,而不同的只是第三个字母。应用学科细胞生物学(一级学科),细胞遗传(二级学科)

简并引物设计的新手入门

最近想用“简并引物”设计点实验做做,上网找了点东东,还是发现了不少东西。特总结如下:主要包括简并引物设计 常用的几个方面及简并因为设计时的注意事项。简并引物是指代表编码单个氨基酸所有不同碱基可能性的不同序列的混合物。密码子具有简并性,单以氨基酸顺序推测编码的DNA序列是不精确的,但可以设计成对简并引

简并态物质的特性

1、温度一定,密度越大,越容易简并。2、密度一定,温度越低,越容易简并。3、温度、密度都一定,粒子质量越小越容易简并。

什么是简并引物?

简并引物是指代表编码单个氨基酸所有不同碱基序列可能性引物的混合物。PCR为了增加特异性,可以参考密码子使用表,根据不同生物的碱基使用偏好,减少简并性。简并度越低,产物特异性越强,设计引物时应尽量选择简并性小的氨基酸,并避免引物3'末端简并。

简述简并密码子的表现

  许多氨基酸的密码子的第1和第2个碱基相同,只有第3个碱基不同,密码子的简并性,特别是第三位的胞嘧啶和尿嘧啶或鸟嘌呤和腺嘌呤的简并性常常等同(右表),这说明为什么在不同生物的DNA中的AT/GC比率会有很大的变异,而其蛋白质的氨基酸相对比例却没有很大的变化。  对应于同一种氨基酸的不同密码子称为同

cDNA-法推断蛋白质的一级结构实验2

二、引物的设计实验步骤在得到蛋白质部分氨基酸序列的基础上通常采用设计简并性或偏性引物,用锚定 PCR 的方法来获得该蛋白质的 cDNA 部分或全长序列。现在许多公司推出的 RACE(rapidly amplication cDNA ends)系统的技术核心便是如此。简并性引物的设计一般遵循以下几个原

什么是简并态物质?

简并态物质是一种高密度的物质状态。简并态物质的压力主要来源于泡利不相容原理,叫做简并压力。

什么是简并态物质?

在极高压的环境下,常温物质会转变成一连串奇怪的物质状态,统称简并态物质。这引起了天体物理学家的兴趣。因为他们相信在恒星中,当核聚变的“燃料”用尽时会出现这种情况,例如白矮星和中子星。中子星主要由简并中子组成的性质奇特的致密天体。1932年发现中子后不久,L.朗道就提出可能存在由中子组成的致密星。19

DNA碱基序列决定其光敏性

DNA分子在所有生命形态中扮演着遗传信息载体的角色,对紫外光的修改具有高度的抵抗性,但要理解其光稳定性的机制还存在一些令人费解的问题,一个重要方面是构成DNA分子的4种碱基之间的相互作用。德国基尔大学的研究人员成功地证明,DNA链因其碱基序列而有不同的光敏感性。相关研究结果刊登在最近出版的《科学》(

简并引物设计方法及原则

相关专题简并引物设计简并引物常用于从已知蛋白到相关核酸分子的研究及用于一组引物扩增一类分子。简并引物设计方法(1)利用NCBI搜索不同物种中同一目的基因的蛋白质或cDNA编码的氨基酸序列 因为密码子的关系,不同的核苷酸序列可能表达的氨基酸序列是相同的,所以氨基酸序列才是真正保守的。首先利用NCBI的

细胞化学基础碱基的种类修饰碱基

DNA和RNA分子中还含有核酸链形成后经过修饰形成的其它非主要碱基。这些碱基大多是在上述嘌呤或嘧啶碱的不同部位甲基化(methylation)或进行其它的化学修饰而形成的衍生物。DNA中最常见的修饰碱基是5-甲基胞嘧啶(m5C)。RNA中有许多修饰的碱基,包括核苷类假尿苷(Ψ)、二氢尿苷(D)、肌苷

组成碱基对的碱基有哪些?

组成碱基对的碱基包括A、G、T、C、U。严格地说,碱基对是一对相互匹配的碱基(即A:T,G:C,A:U相互作用)被氢键连接起来。

碱基互补配对原则的碱基互补的介绍

  在脱氧核糖核酸分子中,含氮碱基为腺嘌呤(A),鸟嘌呤(G),胞嘧啶(C)和胸腺嘧啶(T)。每一种碱基与一个糖和一个磷酸结合形成一种核苷酸。在其双链螺旋结构中,磷酸-糖-磷酸-糖的序列,构成了多苷酸主链。在主链内侧连结着碱基,但一条链上的碱基必须与另一条链上的碱基以相对应的方式存在,即腺嘌呤对应胸

我国学者在DNA测序方法与技术上取得重要进展

  在国家自然科学基金项目(项目编号:21327808,21525521)等资助下,北京大学黄岩谊课题组日前在DNA测序方法与技术上取得重要进展,发展一种全新概念的测序方法—纠错编码测序法(简称ECC),该方法采取一种独特的边合成边测序(SBS)策略,利用多轮测序过程中产生的简并序列间的信息冗余,大

遗传密码的基本特点

方向性密码子是对mRNA分子的碱基序列而言的,它的阅读方向是与mRNA的合成方向或mRNA编码方向一致的,即从5'端至3'端。连续性mRNA的读码方向从5'端至3'端方向,两个密码子之间无任何核苷酸隔开。mRNA链上碱基的插入、缺失和重叠,均会造成框移突变。简并性指一

简述遗传密码的基本特点

  方向性  密码子是对mRNA分子的碱基序列而言的,它的阅读方向是与mRNA的合成方向或mRNA编码方向一致的,即从5'端至3'端。  连续性  mRNA的读码方向从5'端至3'端方向,两个密码子之间无任何核苷酸隔开。mRNA链上碱基的插入、缺失和重叠,均会造成框移