生物体内控制基因表达的机制

生物体内控制基因表达的机制。基因表达的主要过程是基因的转录和信使核糖核酸(mRNA)的翻译。基因调控主要发生在3个水平上,即:①DNA修饰水平、RNA转录的调控、和mRNA翻译过程的控制;②微生物通过基因调控可以改变代谢方式以适应环境的变化,这类基因调控一般是短暂的和可逆的;③多细胞生物的基因调控是细胞分化、形态发生和个体发育的基础,这类调控一般是长期的,而且往往是不可逆的。基因调控的研究有广泛的生物学意义,是发生遗传学和分子遗传学的重要研究领域。......阅读全文

生物体内控制基因表达的机制

生物体内控制基因表达的机制。基因表达的主要过程是基因的转录和信使核糖核酸(mRNA)的翻译。基因调控主要发生在3个水平上,即:①DNA修饰水平、RNA转录的调控、和mRNA翻译过程的控制;②微生物通过基因调控可以改变代谢方式以适应环境的变化,这类基因调控一般是短暂的和可逆的;③多细胞生物的基因调控是

基因表达的机制

转录转录过程由RNA聚合酶(RNAP)进行,以DNA为模板,产物为RNA。RNA聚合酶沿着一段DNA移动,留下新合成的RNA链。基因组DNA由两条反向平行和反向互补链组成,每条链具有5'和3'末端。这两条链分别称为“模板链”(产生RNA转录物的模板)和“编码链”(含有转录本序列的DN

基因表达的机制

转录转录过程由RNA聚合酶(RNAP)进行,以DNA为模板,产物为RNA。RNA聚合酶沿着一段DNA移动,留下新合成的RNA链。基因组DNA由两条反向平行和反向互补链组成,每条链具有5'和3'末端。这两条链分别称为“模板链”(产生RNA转录物的模板)和“编码链”(含有转录本序列的DN

基因表达的机制原理

转录转录过程由RNA聚合酶(RNAP)进行,以DNA为模板,产物为RNA。RNA聚合酶沿着一段DNA移动,留下新合成的RNA链。基因组DNA由两条反向平行和反向互补链组成,每条链具有5'和3'末端。这两条链分别称为“模板链”(产生RNA转录物的模板)和“编码链”(含有转录本序列的DN

日发现水稻体内花期控制机制

  作物开花的早晚会在很大程度上影响作物最终的收获量。日本科学家日前发现,水稻体内存在一种控制机制,可以提早或推迟花期。   水稻属于短日照植物,即在每天日照10小时左右的短日照条件下,会早早抽穗开花。若每天日照13至14个小时或更长,水稻就难以抽穗,也就意味着难以有收成。   日

原核生物基因表达调控模式及其分子机制

原核生物基因的表达调控最重要的特点是操纵子模式,从调控水平来看主要在转录水平,即对RNA合成的调控,翻译水平次之。通常有两种方式:①起始调控,即启动子调控;②终止调控,即衰减子调控。原核基因组的调控机制:通过负调控和正调控因子所进行的复合调控,阻遏蛋白与操纵基因结合,妨碍RNApol与P结合形成开放

基因表达的转录机制介绍

  转录过程由RNA聚合酶(RNAP)进行,以DNA为模板,产物为RNA。RNA聚合酶沿着一段DNA移动,留下新合成的RNA链。  基因组DNA由两条反向平行和反向互补链组成,每条链具有5'和3'末端。这两条链分别称为“模板链”(产生RNA转录物的模板)和“编码链”(含有转录本序列的

是什么在控制基因的表达

在生物体的每一个细胞中都含有该生物体的所有遗传物质,但在细胞中并不是所有基因都会成功表达而是在由受精卵发育而来时细胞分化过程中基因中的片段有目的的进行隐藏和表现从而形成不同的组织,形成各自不同的功能特点。遗传物质存在于外显子部分,内含子的作用不明但其所包含的遗传信息几乎没有,如在基因重组工程中为了得

基因表达RNA加工的机制介绍

  原核蛋白编码基因的转录产生的是可以翻译成蛋白质的信使RNA(mRNA),但真核基因的转录会产生RNA的初级转录本(pre-mRNA),必须经过一系列加工才能成为成熟RNA(mRNA)。RNA的加工包括5端加帽、3端多腺苷酸化和RNA剪接。RNA加工可能是真核生物细胞核带来的进化优势。在原核生物中

体内表达shRNA的设计

1.克隆到shRNA 表达载体中的shRNA 包括两个短反向重复序列,中间由一茎环(loop)序列分隔的,组成发夹结构,由polⅢ启动子控制。随后在连上5-6个T作为RNA 聚合酶Ⅲ的转录终止子。2.两个互补的寡核苷酸两端须带有限制性酶切位点。3.Stratagene发现29个寡核苷酸较之原先推荐的

原核生物基因表达调控大的调节机制有哪些类型

上述问题决定于DNA的结构、RNA聚合酶的功能、蛋白因子及其他小分子配基的互相作用,在转录调控中,现已搞清楚了细菌的几个操纵子模型,现以乳糖操纵子和色氨酸操纵子为例予以说明。法国巴斯德研究所著名的科学家Jacob和Monod在实验的基础上于1961年建立了乳糖操纵子学说。大肠杆菌乳糖操纵子包括4类基

上海生科院解析真核生物基因表达调控的新机制

  2月29日,Nature Plants 杂志在线发表了中国科学院上海生命科学研究院植物逆境生物学研究中心何跃辉课题组(植物环境表观遗传学实验室)题为Coupling of histone methylation and RNA processing by the nuclear mRNA Cap

体内无细胞DNA的表达

对于一些由缺乏三种特定蛋白质的基因突变引起的疾病(如Leber先天性黑蒙和血友病),直接的想法是将能够表达相关蛋白质的基因“播种”到体内,而不是“种”到基因组中,但在细胞质中自由表达。最典型的例子是几种批准的病毒转染基因疗法(如FDA批准的用于治疗遗传性眼病的基因药物“Luxturna”)。这种方法

关于基因表达的翻译机制的介绍

  成熟RNA是非编码RNA的最终基因表达产物 。但信使RNA(mRNA)则不同,它们是编码一种或多种蛋白质合成的遗传信息的载体。 每个mRNA由三部分组成:5'非翻译区(5'UTR),蛋白质编码区或开放阅读框(ORF)和3'非翻译区(3'UTR)。编码区携带由遗传密

关于重塑因子调节基因表达机制的假设

机制1:1 个转录因子独立地与核小体DNA 结合(DNA 可以是核小体或核小体之间的),然后,这个转录因子再结合1 个重塑因子,导致附近核小体结构发生稳定性的变化,又导致其他转录因子的结合,这是一个级联反应的过程——重建;机制2: 由重塑因子首先独立地与核小体结合,不改变其结构,但使其松动并发生滑动

我国科学家解析真核生物基因表达调控新机制

  中科院上海植物逆境生物学研究中心何跃辉课题组发现,染色质修饰与mRNA转录起始及加工有着相互依存关系,两者协同作用,以提高成熟mRNA及基因表达的水平。相关成果2月29日在线发表于《自然—植物学》杂志。  据了解,mRNA前体的转录起始在表观遗传学水平上受到多种转录因子以及染色质修饰与重塑的调控

新CRISPR转基因鼠体内基因表达和表观遗传修饰精准调控

  CRISPR-Cas9系统为基础的基因编辑技术极大的推动了生物医学研究的进步。除直接编辑基因组DNA外,研究者还将失活型Cas9(dCas9)与转录调控元件或染色体修饰元件融合,构建出可实现转录和表观遗传学修饰调控的新工具如CRISPRa(转录激活工具),CRISPRi(转录抑制工具)以及CRI

原核生物基因表达调控途径

真核:转录和翻译分地点进行,转录在核,翻译在基质,翻译是第一个氨基酸是甲硫氨酸,调控方式复杂,多层次,区间性原核:转录和翻译都在基质甚至没转录完就开始翻译,翻译是第一个氨基酸为甲酰甲硫氨酸,调控机制多为操纵子原核生物没有内含子,dna复制和转录相对较容易也比较简单,调控几乎完全由基因上游的rna聚合

核糖核酸干扰可控制癌症活跃基因的表达

  加拿大麦吉尔大学生物化学系研究人员发现,与核糖核酸相结合的一种蛋白质片断能够控制基因的正常表达,其中包括那些在癌症中活跃的基因。专家认为,这是癌症研究工作的一项重要突破,可立即将其应用到实验室的研究工作中,并且使目前各国科学家广泛开展的癌症个性化治疗工作向前推进了一大步。相关研究成

NEJM:抑制关键基因的表达可精准控制脂肪浓度

  甘油三脂,又称脂肪。是人体内含量最多的脂类,也是血脂检查中较重要的一项指标。甘油三酯与胆固醇都属于脂质,来源于食物中的脂肪或者由我们身体产生。血液中甘油三酯的累积超过标准,会增加患心血管疾病、胰腺疾病以及其他并发症的风险。  高甘油三酯症容易引发系列常见健康问题,例如肥胖或者糖尿病。因为甘油三酯

中外学者:洗个澡就能控制基因表达?

  最近,来自瑞士苏黎世联邦理工学院、华东师范大学等处的研究人员,在国际著名学术期刊《Nucleic Acids Research》发表的一项研究中,通过化学物质苯甲酸酯(parabens,是常见的皮肤护理产品成分)来打开和关闭转基因。那么,这是否可以作为一种非侵入性的方法,用于传递剂量特异性的转基

研究发现人类基因表达新机制

  一项新研究有可能会改变科学家们对于人类蛋白质生成过程的认识。来自芝加哥大学的研究人员发现单基因可以借由同一条信使RNA序列,编码生成两种不同的蛋白质。他们的研究结果在线发布在7月3日的《细胞》(Cell)杂志上,阐明了从前未知的一种人类基因表达机制,并为开发出新的治疗策略来对抗迄今无法治愈的神经

国外研究发现细胞基因表达新机制

  捷克马萨里克大学中欧技术研究所的科研团队发现了一种新的细胞分化基因表达机制。该研究项目名为“植物减数分裂的调控及其操作技术的发展”,相关成果发表在《科学》上。  该团队开发了一种独特的方法,使用特殊显微镜实时连续成像观察植物细胞减数分裂,并掌握原生质体技术,成为目前全球仅有的两个可实时观察植物减

《科学》:突破显微镜的局限-这套系统能看清体内基因表达

  今日,最新一期《科学》杂志上报道了一篇值得关注的论文。加州理工学院的一支团队开发出了一套全新的超声成像系统。它能够在活体动物中,让科学家们亲眼看到基因的表达。尽管这项技术目前还较为初步,但可以想象,一旦发展成熟,它将能给多种疾病的检测带来突破。  事实上,过去的科学家们早已开发出了许多检测基因表

生物芯片用于基因表达水平的检测

用基因芯片进行的表达水平检测可自动、快速地检测出成千上万个基因的表达情况。谢纳(M.Schena) 等用人外周血淋巴细胞的cDNA文库构建一个代表1046个基因的cDNA微阵列,来检测体外培养的T细胞对热休克反应后不同基因表达的差异,发现有5个基因在处理后存在非常明显的高表达,11个基因中度表达增加

关于基因表达的机制蛋白质运输的介绍

  许多蛋白质定位于细胞质以外的其它细胞器,多种信号序列(信号肽)负责将蛋白质引导至它们应该在的细胞器。原核生物中,由于细胞的有限区室化,这通常是一个简单的过程。真核生物却存在多种不同的靶向过程以确保蛋白质到达正确的细胞器。  并非所有蛋白质都保留在细胞内,许多蛋白质如消化酶、激素和细胞外基质蛋白通

体内表达shRNA(短发夹RNA)的设计

1.克隆到shRNA表达载体中的shRNA包括两个短反向重复序列,中间由一茎环(loop)序列分隔的,组成发夹结构,由polⅢ启动子控制。随后在连上5-6个T作为RNA聚合酶Ⅲ的转录终止子。 2.两个互补的寡核苷酸两端须带有限制性酶切位点。 3.Stratagene发现29个寡核苷酸较之原先推荐的2

阐述原核生物基因表达调控途径

这个题目在微生物学上是整整一章的内容,所以要想详细叙述太难了,我大概给你列出吧。转录水平调控:1.操纵子的转录调控;2.分解代谢物阻遏调控;3.细菌的应急反应;4.通过σ因子更换的调控;5.信号转导和二组分调节系统;6.噬菌体溶源化和裂解途径的转录调控。转录后调控:1.翻译起始调控;2.mRNA的稳

真核生物与原核生物基因表达调控的差异

原核生物同一群体的每个细胞都和外界环境直接接触,它们主要通过转录调控,以开启或关闭某些基因的表达来适应环境条件(主要是营养水平的变化),故环境因子往往是调控的诱导物。而大多数真核生物,基因表达调控最明显的特征是能在特定时间和特定的细胞中激活特定的基因,从而实现“预定”的,有序的,不可逆的分化和发育过

蛋白质磷酸化调控基因表达的机制

组蛋白的磷酸化一般导致对应区域基因表达的上调。表观遗传调控包括DNA甲基化,组蛋白修饰(磷酸化,乙酰化,甲基化等)和小RNA调节,是在DNA序列的基础上对基因表达的调节,是细胞分化的本质。如果除去表观遗传调控,人体各个细胞应该是一样的,但是组蛋白修饰在DNA复制过程中不但可以被复制,也可以在相应蛋白