简述乙酸乙酯的物理性质
密度:0.902g/cm3 熔点:-84℃ 沸点:76.6-77.5℃ 闪点:-4℃(CC) 折射率:1.372(20℃) 饱和蒸气压:10.1kPa(20℃) 临界温度:250.1℃ 临界压力:3.83MPa 引燃温度:426.7℃ 爆炸上限(V/V):11.5% 外观:无色液体 溶解性:微溶于水,溶于乙醇、丙酮、乙醚、氯仿、苯等多数有机溶剂......阅读全文
乙酸乙酯的制取实验
乙醇乙酸意缱绻, 催化吸水求硫酸。 常加碎瓷防暴沸, 除酸除醇靠纯碱。 解释: 1、乙醇乙酸意缱绻,催化吸水求硫酸:这句的意思是说乙酸乙醇在浓硫酸的催化作用下发生酯化反应生成乙酸乙酯,在该反应中浓硫酸既是催化剂又是吸水剂(因为该反应是可逆反应,生成的水被浓硫酸吸收掉,降低了生成物水的浓
简述锂电池负极材料镍元素的物理性质
有良好延展性,具有中等硬度。 镍是银白色金属,具有磁性和良好的可塑性。有好的耐腐蚀性,镍近似银白色、硬而有延展性并具有铁磁性的金属元素,它能够高度磨光和抗腐蚀。溶于硝酸后,呈绿色。主要用于合金(如镍钢和镍银)及用作催化剂(如兰尼镍,尤指用作氢化的催化剂) 密度:8.902g/cm3 熔点:
简述L阿拉伯糖的物理性质
L-阿拉伯糖,又称树胶醛糖;是一种戊醛糖。在自然界中L-阿拉伯糖很少以单糖形式存在,通常与其他单糖结合,以杂多糖的形式存在于胶质、半纤维 素、果胶酸、细菌多糖及某些糖苷中。其对热和酸的稳定性高。L-阿拉伯糖作为一种低热量的甜味剂, 已被美国食品药品监督局和日本厚生省批准列入健康食品 添加剂。L-
简述一氧化氮的物理性质
1、性状:无色气体 2、熔点(℃):-163.6 3、沸点(℃):-151.8 4、相对密度(水=1):1.27(-151℃) 5、相对蒸气密度(空气=1):1.04 6、饱和蒸气压(kPa):6079.2(-94.8℃) 7、临界温度(℃):-93 8、临界压力(MPa):6.4
乙酸乙酯的泄漏应急处理
迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿消防防护服。尽可能切断泄漏源,防止进入下水道、排洪沟等限制性空间。 小量泄漏:用活性炭或其他惰性材料吸收。也可以用大量水冲洗,洗水稀释后放入废水系统。 大量泄漏:构筑围堤或挖坑收容;用泡
关于乙酸乙酯的基本介绍
乙酸乙酯(ethyl acetate),又称醋酸乙酯,是一种有机化合物,化学式为C4H8O2,是一种具有官能团-COOR的酯类(碳与氧之间是双键),能发生醇解、氨解、酯交换、还原等一般酯的共同反应,主要用作溶剂、食用香料、清洗去油剂。
简述钴酸锂离子电池材料锂的物理性质
银白色金属。质较软,可用刀切割。是最轻的金属,密度比所有的油和液态烃都小,故应存放于固体石蜡或者白凡士林中(在液体石蜡中锂也会浮起)。 锂的密度非常小,仅有0.534g/cm³,为非气态单质中最小的一个。 因为锂原子半径小,故其比起其他的碱金属,压缩性最小,硬度最大,熔点最高。 温度高于-
乙酸乙酯合成操作流程
实验室制取乙酸乙酯乙酸乙酯的制取:先加乙醇,再加浓硫酸(加入碎瓷片以防暴沸),最后加乙酸, 然后加热(可以控制实验) 乙酸的酯化反应制乙酸乙酯的方程式: CH3COOH+CH3CH2OH⇄CH3COOC2H5+H2O (可逆反应、加热、浓硫酸催化剂、吸水剂、) 1:酯化反应是一个可逆反应。为了提高酯
乙酸乙酯和水的萃取时间
乙酸乙酯和水的萃取时间为转速为650r/min、搅拌时间为30min、静置时间为30min。实验结果表明:常温下当溶剂比(Vs/VF)为1:1、转速为650r/min、搅拌时间为30min、静置时间为30min时萃取效果最好。经过3级错流萃取,乙酸乙酯的含量达到99.6%。在错流基础上,对逆流进行系
乙酸乙酯中水分含量的测定
一、水分的危害 在塑料软包装的复合和印刷中,需要用到很多溶剂,它们本身的质量对产品有很大影响,其中水分含量是关系产品质量的重要因素之一。以乙酸乙酯溶剂为例,因为每摩尔的水分会消耗同样摩尔的固化剂。换言之,在复合生产中,1份水分会消耗18份的固化剂,所以微量的水分存在会造成很大破坏。据相关资
乙酸乙酯中水分含量的测定
一、水分的危害 在塑料软包装的复合和印刷中,需要用到很多溶剂,它们本身的质量对产品有很大影响,其中水分含量是关系产品质量的重要因素之一。以乙酸乙酯溶剂为例,因为每摩尔的水分会消耗同样摩尔的固化剂。换言之,在复合生产中,1份水分会消耗18份的固化剂,所以微量的水分存在会造成很大破坏。据相关资料记载,乙
乙酸乙酯中水分含量的测定方法
一、水分的危害在塑料软包装的复合和印刷中,需要用到很多溶剂,它们本身的质量对产品有很大影响,其中水分含量是关系产品质量的重要因素之一。以乙酸乙酯溶剂为例,因为每摩尔的水分会消耗同样摩尔的固化剂。换言之,在复合生产中,1份水分会消耗18份的固化剂,所以微量的水分存在会造成很大破坏。据相关资料记载,乙酸
关于苯乙酸乙酯的用途介绍
苯乙酸乙酯用作农药、医药中间体 【用途一】用于配制各种花香型日用香精。 【用途二】用作溶剂及香料辅助剂,也用于有机合成。 【用途三】少量用于多种类型的香型中,主要用于中、低档白玫瑰、檀香玫瑰、铃兰、甜豆花、橙花、蜜香、三叶草及一些脂蜡香香型中。可广泛应用于烟用及食用香精中,是好的烟用香精的
乙酰乙酸乙酯的合成方法介绍
工业上普遍采用的制备方法是双乙烯酮和乙醇在浓硫酸催化下进行酯化,得乙酰乙酸乙酯粗品,再经减压精馏得成品,具体步骤如下: 在酯化锅内按配比加入乙醇和浓硫酸,搅拌加热,当温度升至82℃时,开始滴加双乙烯酮,酯化温度不得超过130ºC。继续回流到反应温度不再变化且酯化液无双乙烯酮时结束反应。将料液温
乙酸乙酯中水分含量的测定方法
一、水分的危害 在塑料软包装的复合和印刷中,需要用到很多溶剂,它们本身的质量对产品有很大影响,其中水分含量是关系产品质量的重要因素之一。以乙酸乙酯溶剂为例,因为每摩尔的水分会消耗同样摩尔的固化剂。换言之,在复合生产中,1份水分会消耗18份的固化剂,所以微量的水分存在会造成很大破坏。
概述乙酸乙酯的化学性质
乙酸乙酯能发生醇解、氨解、酯交换、还原等一般酯的共同反应。金属钠存在下自行缩合,生成3-羟基-2-丁酮或乙酰乙酸乙酯;与Grignard试剂反应生成酮,进一步反应得到叔醇。乙酸乙酯对热比较稳定,290℃加热8~10小时无变化。通过红热的铁管时分解成乙烯和乙酸,通过加热到300~350℃的锌粉分解
关于乙酸乙酯的化学反应介绍
1、水解反应 乙酸乙酯容易水解,常温下有水存在时,也逐渐水解生成乙酸和乙醇。添加微量的酸或碱能促进水解反应。乙酸乙酯的碱性水解与酸性水解最大的差别在于,碱性水解是不可逆的,也就是反应机制中可逆的进程与不可逆的进程。乙酸与乙醇发生可逆反应会生成乙酸乙酯。陈酒很好喝,就是因为酒中少量的乙酸与乙醇反
简述邻苯二甲酸二甲酯的物理性质
酯含量,% ≥99.0 99.0-100.5 99.5-100.5 酸度(C8H6O4),% ≤0.01 ≤0.01水份,% ≤0.01 ≤0.08 ≤0.05 色泽(铂钴比色),号 ≤30 ≤25 ≤20 折光率(n20D) 1.515-1.517 1.515-1.517 灰份,% ≤
核酸的物理性质
黏性:DNA的高轴比等性质使得其水溶液具有高黏性,很长的DNA分子又易于被机械力或超声波损伤,同时黏度下降。浮力密度:可根据DNA的密度对其进行纯化和分析。在高浓度分子质量的盐溶液(CsCl)中,DNA具有与溶液大致相同的密度,将溶液高速离心,则CsCl趋于沉降于底部,从而建立密度梯度,而DNA最终
核酸的物理性质
物理性质黏性:DNA的高轴比等性质使得其水溶液具有高黏性,很长的DNA分子又易于被机械力或超声波损伤,同时黏度下降。浮力密度:可根据DNA的密度对其进行纯化和分析。在高浓度分子质量的盐溶液(CsCl)中,DNA具有与溶液大致相同的密度,将溶液高速离心,则CsCl趋于沉降于底部,从而建立密度梯度,而D
核酸的物理性质
黏性:DNA的高轴比等性质使得其水溶液具有高黏性,很长的DNA分子又易于被机械力或超声波损伤,同时黏度下降。浮力密度:可根据DNA的密度对其进行纯化和分析。在高浓度分子质量的盐溶液(CsCl)中,DNA具有与溶液大致相同的密度,将溶液高速离心,则CsCl趋于沉降于底部,从而建立密度梯度,而DNA最终
核酸的物理性质
黏性:DNA的高轴比等性质使得其水溶液具有高黏性,很长的DNA分子又易于被机械力或超声波损伤,同时黏度下降。浮力密度:可根据DNA的密度对其进行纯化和分析。在高浓度分子质量的盐溶液(CsCl)中,DNA具有与溶液大致相同的密度,将溶液高速离心,则CsCl趋于沉降于底部,从而建立密度梯度,而DNA最终
单糖的物理性质
物理性质单糖通常是易溶于水的无色晶体,大多有吸湿性。难溶于乙醇,不溶于乙醚。单糖有旋光性,多于四个碳的单糖的溶液有变旋现象。
烯烃的物理性质
烯烃的物理性质可以与烷烃对比。物理状态决定于分子质量。标况或常温下,简单的烯烃中,乙烯、丙烯和丁烯是气体,含有5至18个碳原子的直链烯烃是液体,更高级的烯烃则是蜡状固体。标况或常温下,C2~C4烯烃为气体;C5~C18为易挥发液体;C19以上固体。在正构烯烃中,随着相对分子质量的增加,沸点升高。同碳
苯的物理性质
物理性质苯在常温下为一种无色、有甜味的透明液体,其密度小于水,具有强烈的芳香气味。苯的沸点为80.1℃,熔点为5.5℃。苯比水密度低,密度为0.88g/cm3,但其分子量比水重。苯难溶于水,1升水中最多溶解1.7g苯;但苯是一种良好的有机溶剂,溶解有机分子和一些非极性的无机分子的能力很强,除甘油,乙
盐的物理性质
颜色盐的颜色可以是纯洁透明的(如氯化钠)、不透明的或者是带有金属光泽的(如黄铁矿)。大多数情况下盐表面的透明或不透明只和构成该盐的单晶体有关。当光线照射到盐上时,就会被晶界(晶体之间的边界)反射回来,大的晶体就会呈现出透明状,多晶体聚集在一起则会看起来更像白色粉末一样。盐有许多颜色,例如:黄色(例如